

1

Hawkeye: Unmanned Search

and Rescue Missions through

Intelligent Drones Guided by

Computer Vision and Dynamic

Pathfinding

Adiyan Kaul

Sohan Vichare

2

Table of Contents

1) ​Inspiration, Project Proposal, and Plan​ Pg. 3 - 5

2) ​Drone Specifications​ Pg. 6 - 7

3) ​Person Recognition Code ​Pg. 8 - 14

a. Overview

b. Code Samples

c. Debrief

4) ​Dynamic Pathfinding Code ​Pg. 15 - 18

a. Overview

b. Code Samples

c. Debrief

5)​ Drone Flight Code ​Pg. 19 - 21

a. Overview

b. Code Samples

c. Debrief

7) ​Project Summary ​Pg. 22

a. Project Summary and Takeaways

8) ​Photos ​Pg. 23-38

9) ​Full Code ​Pg. 39-87

3

Inspiration, Proposal, and Plan

Inspiration

The use of drones in search and rescue missions holds much promise. As of now, various

government agencies are using drones to assist in search and rescue missions. However, we

noticed one thing about drones being used in search and rescue missions - ​they are all controlled

by people.​ We strongly believe that autonomously controlled drones, that is, drones that can

control themselves, can make search and rescue missions that currently require massive amounts

of manpower due to their sheer size much more efficient.

Brief Project Proposal

Build and program a drone that can accomplish the following:

1. Take off and fly itself around a user-defined area of land

2. Detect people

3. Bring these people to user-defined safe points

a. Detect and avoid obstacles (for use in rough, mountainous, environments)

4. Collect relevant data

5. Complete the above as efficiently as possible

The complete Engineering Project Detailed Research Plan is attached at the end of this journal.

Plan
Materials

4

1. 3DR Y6 2014 DIY Drone Kit (Drone body)

2. 3DR GPS Module (Drone GPS)

3. Pixhawk 32-Bit with ArduPilot (Drone CPU)

4. Raspberry Pi 2 B+ (Onboard Drone Companion Computer)

5. Raspberry Pi Camera (Camera for Person and Object Recognition)

6. 3DR Y6 Lithium-Polymer 4S 5200mAh Battery (Drone battery)

7. Anker Astro Battery (Raspberry Pi Onboard Battery)

8. MicroUSB Cable (Connect Raspberry Pi to Pixhawk)

Build Plan Diagram

5

Flight Plan Diagram

6

Drone Specifications
3DR Y6 Body Specs

Motors: 6

Weight (without battery): 1200 grams

Weight (with batteries): 2100 grams

Wingspan: 40 centimeters

Propeller Length: 23 centimeters

Height: 29 centimeters

Pixhawk Drone CPU Specs

Processor: 168 MHz / 252 MIPS Cortex-M4F

Height: 1.8 centimeters

Width: 7.8 centimeters

7

Raspberry Pi Onboard Computer Specs

Processor: ​A 900MHz quad-core ARM Cortex-A7 CPU

RAM: 1GB

Operating System: Debian Linux

Dimensions: ​104mm x 75mm x 23mm

8

Person Recognition Code
Overview

1. Wrote code with Opencv

2. Used Haar Cascade Classifiers to determine what was a person

3. Found the classifier granted by OpenCV far too inaccurate so we trained the classifier to

make it far more accurate

4. Optimized it to work real time and efficiently

B.) Code Samples

1. Code for frontal face detection

code explanation
1.import numpy as np

 import cv2

2. face_cascade =

cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')

3.img = cv2.imread('insert image file name here’')

1. These are the necessary imports

when working with face detection.

Cv2 is the opencv library and numpy

is a math library

2. This creates the classifiers which

deal with finding people. The face

cascade finds faces and the eye

cascade finds eyes

3. This sends the image to opencv and

9

4. rects = face_cascade.detectMultiScale(img,

scaleFactor=1.3, minNeighbors=4, minSize=(30,

30),flags=cv2.CASCADE_SCALE_IMAGE)

5. for (x, y, w, h) in rects:

 cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)

 roi_color = img[y:y+h, x:x+w]

 eyes = eye_cascade.detectMultiScale(roi_color)

 for (ex,ey,ew,eh) in eyes:

 cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),

 (0,255,0),2)

6. cv2.imshow('img',img)

 cv2.waitKey(0)

 cv2.destroyAllWindows()

converts it into a matrix with the rgb

values .

4. This finds the actual faces with the

help of the parameters. The img is the

matrix which was declared in step 3,

the scale factor ​specifies how much

the image size is reduced at each

image scale, the minimum neighbors

specifies how many neighbors each

candidate should have, and the min

size is the minimum possible size of

the object.

5. This draws the actual rectangles

around the face and the eyes. The

cv2.rectangle is the opencv function

for drawing a rectangle. The roi_color

is a subsection of the picture and the

eyes are found in that section.

6. This finally shows the resulting

image after all the recognition and

escapes when the escape key is

pressed.

10

 2. Pedestrian Detection

Code Explanation
1.import numpy as np
import cv2
import imutils
from imutils.object_detection import
non_max_suppression

2. hog = cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDef
aultPeopleDetector())

3. image = cv2.imread('insert file name here’')
orig = image.copy()

4. (rects, weights) = hog.detectMultiScale(image,
winStride=(4, 4),

padding=(8, 8), scale=1.05)

5. for (x, y, w, h) in rects:

cv2.rectangle(orig, (x, y), (x + w, y + h),
(0, 0, 255), 2)

6. rects = np.array([[x, y, x + w, y + h] for (x, y,
w, h) in rects])
pick = non_max_suppression(rects, probs=None,
overlapThresh=0.65)

7.for (xA, yA, xB, yB) in pick:

cv2.rectangle(image, (xA, yA), (xB, yB),
(0, 255, 0), 2)

1. These are all the imports necessary for the code
to work.

2. This creates a hog descriptor or a histogram of
oriented gradients which is a feature descriptor
used in computer vision for the purpose of object
detection

3. This sends the image to opencv and converts it
into a matrix with the rgb values .

4. This detects the people in the image using the
parameters. Image refers to the step 3 image, win
Stride dictates the “step size” in both the ​x​ and ​y
location of the sliding window, the padding is a
tuple which indicates the number of pixels in both
the ​x​ and ​y ​direction in which the sliding window
ROI is “padded” prior to HOG feature
extraction,and the scale controls the factor in
which our image is resized at each layter of the
image pyramid, ultimately influencing the ​number
of levels in the image pyramid.

5. This draws the rectangles around all the people
the previous step.

6. This applies non-maxima suppression to the
bounding boxes using a fairly large overlap
threshold to try to maintain overlapping boxes that
are still people. This ensures that the people
detection is accurate.

7. This draws the proper rectangles around the
people based on the last step.

11

8. cv2.imshow("Before NMS", orig)
cv2.imshow("After NMS", image)
cv2.waitKey(0)

8. This displays two images, one with all the
rectangles and one with the accurate rectangles.

Debrief
1. Here is an image that we experimented with:

12

2. Here is the result:

3. As can be seen the code was able to find my face and drew a rectangle around my face

and my eyes.This took place in around 3 seconds showing its precision and accuracy

13

4. Here is an example of a drone's camera view​:

5. The following two pictures shows the output of the people detection from the Hog

classifier.

a. The prelim image:

14

 b. The accurate image:

This highlights the accuracy of the Hog Descriptor as it was able to recognize most of the

people in the image with remarkable accuracy. All of the rectangles the program drew

were actual people and this is how we are finding the people with the drone. Although the

code was not able to recognize every single person in the picture, it was still very

accurate as every rectangle it drew was a real person.

15

Pathfinding Code
Overview
Use

The pathfinding code will be used to the drone lead people back to user-defined safe points

around things that they cannot get across. Computer Vision code (see above) will identify and

input the locations of points that people will not be able to cross.

Requirements

1. Dynamic Path Replanning

a. the drone has to navigate itself in an environment which it does not fully know -

the path planning algorithm must be able to take input and dynamically replan a

path with a new obstacle on the fly

2. Latitude and Longitude

a. the path planning algorithm must be able to take in inputs of latitude and

longitude coordinates for safe points and obstacles

3. Optimized

a. the path planning algorithm must be optimized (NOT brute force) as it will be run

alongside computer vision algorithms on the Raspberry Pi

Plan

Based on our requirements, we decided to base our algorithm off the D* Lite Path

Planning Algorithm (based on this paper: http://idm-lab.org/bib/abstracts/papers/aaai02b.pdf,

printout attached at back of report). This algorithm, developed by Professor Sven Koenig, not

only is not processing-intensive but also allows for dynamic path replanning.

Comparison to A* and Djikstra’s Algorithm

A* and Djikstra’s algorithm are two very popular path-planning algorithms. However,

both fall short when it comes to replanning a path upon addition or subtraction of a new obstacle

16

in the environment. D* Lite, on the other hand, has the power to dynamically change the costs of

surrounding nodes, so essentially the path can be replanned around the newly added obstacle

while most of the original path remains intact.

Code Walkthrough
**Due to space constraints, the actual D* Lite code is not included here. To view it, go to page

49**

D* Lite Algorithm Pseudocode (Taken From ​D* Lite​, by Sven Koenig and Maxim Likhachev)

D* Lite Pathfinding Algorithm Simple Explanation

D* Lite begins (Initialize() method above) by finding the ideal shortest path between the “start”

and the “end.” It divides the world into a grid, and each point is a node. D* Lite uses a novel

method, taken from the Lifelong Planning A* algorithm to cheaply adapt to obstacles as they

block the computed path. Each node on the specified path calculates its own “g” value, which is

the cost of getting to that node from the start. However, the algorithm also computes another “g”

value based on the node’s neighboring node’s “g” values, which is called “rhs.” The minimum

value is stored in “rhs” and later used to update the node’s “g” value.​ During this estimating

process, neighboring nodes take into account the new obstacles so that “g” is updated with an

“rhs” that has taken into account the new obstacles or free spaces.

17

Debrief
D* Lite Results

18

As can be seen, the D* Lite pathfinding code successfully found the shortest path between a

randomly generated field of obstacles. Here are a few more outputs:

19

20

Drone Flight Code
Overview

1. Wrote Python code to get the drone to fly

2. Used dronekit python to do so (http://dronekit.io)

B.) Code Samples

Code Explanation
1. from dronekit import connect, VehicleMode,

LocationGlobalRelative

import time

2. print 'Connecting to vehicle;'

vehicle = connect("/dev/ttyACM0",

wait_ready=True)

3. def arm_and_takeoff(aTargetAltitude):

 """

 Arms vehicle and fly to aTargetAltitude.

 """

1. These are the necessary imports for the code to
work.

2. This declares the vehicle variable and sets it to
the drone using the connection.

3. This defines a function arm_and_takeoff which
does a lot of different things. First it confirms the
vehicle is armed before it can take off. Then
using the vehicle.simple_takeoff() function it
starts the propeller. Once it has reached that height

21

 print "Basic pre-arm checks"

 # Don't try to arm until autopilot is ready

 while not vehicle.is_armable:

 print " Waiting for vehicle to initialise..."

 time.sleep(1)

 print "Arming motors"

 # Copter should arm in GUIDED mode

 vehicle.mode = VehicleMode("GUIDED")

 vehicle.armed = True

 # Confirm vehicle armed before attempting to

take off

 while not vehicle.armed:

 print " Waiting for arming..."

 time.sleep(1)

 print "Taking off!"

 vehicle.simple_takeoff(aTargetAltitude) # Take

off to target altitude

 # Wait until the vehicle reaches a safe height

before processing the goto (otherwise the

command

 # after Vehicle.simple_takeoff will execute

immediately).

 while True:

 print " Altitude: ",

vehicle.location.global_relative_frame.alt

 #Break and return from function just below

the function will break.

22

target altitude.

 if

vehicle.location.global_relative_frame.alt>=aTarg

etAltitude*0.95:

 print "Reached target altitude"

 break

 time.sleep(1)

4. arm_and_takeoff(1)

print "Set default/target airspeed to 3"

vehicle.airspeed=3

print "Returning to Launch"

vehicle.mode = VehicleMode("LAND")

#Close vehicle object before exiting script

print "Close vehicle object"

vehicle.close()

4. This code calls the arm_and_takeoff function
declared above which flies the drone up one meter
because of the passed in 1 parameter. After the
drone has reached the height of one meter, the
mode of the vehicle is changed to RTL. This
signifies return to launch which means the drone
flies back to the location it started from. The drone
is then disarmed and turned off.

23

Project Summary
Person Recognition:
This was also extremely successful and was able to detect people at a remarkable accuracy rate.

We fed the program lots and lots of pictures and found the accuracy to be right about 80%. When

we were testing we realized that the program often didn’t find people who were laying down. To

solve this problem we trained our own hog classifier. This was done in three steps. ​Step 1)​ We

prepared some training images of the objects you want to detect (positive samples). Also we will

prepared some images with no objects of interest (negative samples).​Step 2)​ We then detected

HOG features of the training sample and use this features to train an SVM classifier (also

provided in OpenCV).​Step 3)​ Use the coefficients of the trained SVM classifier in

HOGDescriptor.setSVMDetector() method. This was able to get a lot more people but it still

wasn’t as accurate as we would like it to be. However, the person recognition was accurate

enough for us to be able to get people with accuracy and be able to save them.

Pathfinding:

24

We were successfully able to implement the D* Lite pathfinding algorithm to dynamically find

the shortest path between the drone and the safe “goal” location while avoiding obstacles to the

person. Due to its grid based processing, the algorithm worked perfectly after we modified its

“world” to be a grid of latitude and longitudinal points.

Drone Flight:
The drone flight code worked successfully. The Raspberry Pi sent commands to the Pixhawk,

which then interfaced with the drone’s motors to control the drone. We had to put set times

behind each command we sent to the Pixhawk to allow them to run and/or continuously monitor

the location of the drone in the world frame to make sure that one command was not sent while

another was not finished running. The drone code we wrote made it easy to interface with the

pixhawk, and is reusable, so that we can utilize it in the future to easily control a drone.

Photos

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Search and Rescue Code
import numpy as np

import math

import cv2

from picamera.array import PiRGBArray

from picamera import PiCamera

from dronekit import connect, VehicleMode, LocationGlobalRelative

from pymavlink import mavutil # Needed for command message

definitions

import time

from dronekit_sitl import SITL

from imutils.object_detection import non_max_suppression

#defines drone variable

vehicle = connect("/dev/ttyACM0", wait_ready=True);

#defines variable t

face_cascade =

cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

initialize the camera and grab a reference to the raw camera

capture

camera = PiCamera()

rawCapture = PiRGBArray(camera)

hog = cv2.HOGDescriptor()

hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())

#define location class that stores latitude and longitude

class Location:

 "Basic Location class, used to store latitude and longitude"

 def __init__(self, latitude, longitude):

 self.latitude = latitude

 self.longitude = longitude

42

#define SafeLocation class, which stores location data, which people

are at each Safe Location

class SafeLocation:

 "Safe Location class, used to store data for a safe location. Has

two attributes, one is location (a location object which stores the

location), and the second is peopleArrivedArray, which is an array

that stores the people who have reached this location."

 def __init__(self, location):

 self.location = location

 #an array of Person objects, used to store what people are

already at the safeLocation

 self.peopleArrivedArray = [];

#define helper method to print arrays with locations so that they are

easy to see

def printLocationArray(locationArray):

 for item in locationArray:

 print item.latitude

 print item.longitude

 print " "

#define helper method to get an array of the locations object from an

array of a person, safelocation, or any other object that has

location as a property

def getLocationsArray(safeLocsArray):

 returnArray = []

 for item in safeLocsArray:

 returnArray.append(item.location);

 return returnArray;

#distance formula function, finds distance between two location

objects, accounting for the earth's spherical shape (assumes that

earth is a sphere)

def distanceBetweenLocations(location1, location2):

 # Convert latitude and longitude to spherical coordinates in

radians.

 degreesToRadians = math.pi/180.0

 # phi = 90 - latitude

 phi1 = (90.0 - location1.latitude)*degreesToRadians

 phi2 = (90.0 - location2.latitude)*degreesToRadians

43

 # theta = longitude

 theta1 = location1.longitude*degreesToRadians

 theta2 = location2.longitude*degreesToRadians

 # Compute spherical distance from spherical coordinates.

 # For two locations in spherical coordinates

 # (1, theta, phi) and (1, theta', phi')

 # cosine(arc length) =

 # sin phi sin phi' cos(theta-theta') + cos phi cos phi'

 # distance = rho * arc length

 cos = (math.sin(phi1)*math.sin(phi2)*math.cos(theta1 - theta2) +

 math.cos(phi1)*math.cos(phi2))

 arc = math.acos(cos)

 # multiply and return arc by the right distance unit, miles or

kilometers

 unit = 1;

 return arc * unit;

def closestSafePoint(droneLocation, safePointLocationArray):

 #define array that will be returned

 closestPointIndexArray = [];

 usedIndexArray = [];

 closestDist = 1000;

 closestIndex = 0;

 for index, item in enumerate(safePointLocationArray):

 for ind, itm in enumerate(safePointLocationArray):

 if ind not in usedIndexArray:

 dist = distanceBetweenLocations(itm.location,

droneLocation);

 if dist <= closestDist:

 closestDist = dist;

 closestIndex = ind;

 if closestIndex not in usedIndexArray:

 usedIndexArray.append(closestIndex);

 closestPointIndexArray.append(closestIndex);

 closestDist = 1000;

44

 return closestPointIndexArray.sort();

#takes a "picture" of what the picamera is seeing by saving the array

def takePicture():

 camera.capture(rawCapture, format="bgr")

 image = rawCapture.array

 return image

gets the number of people in the image

def readImage(image):

 (rects, weights) = hog.detectMultiScale(image, winStride=(4, 4),

padding=(8, 8), scale=1.05)

 rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in

rects])

 pick = non_max_suppression(rects, probs=None, overlapThresh=0.65)

 count=0

 for (xA, yA, xB, yB) in pick:

 count=count+1

 return count

def findNumPeople():

 img =takePicture();

 people= readImage(img)

 return people

'''dx = R*cos(theta)

 = 500 * cos(135 deg)

 = -353.55 meters

dy = R*sin(theta)

 = 500 * sin(135 deg)

 = +353.55 meters

delta_longitude = dx/(111320*cos(latitude))

 = -353.55/(111320*cos(41.88592 deg))

 = -.004266 deg (approx -15.36 arcsec)

delta_latitude = dy/110540

 = 353.55/110540

 = .003198 deg (approx 11.51 arcsec)

Final longitude = start_longitude + delta_longitude

45

 = -87.62788 - .004266

 = -87.632146

Final latitude = start_latitude + delta_latitude

 = 41.88592 + .003198

 = 41.889118

'''

def get_distance_metres(aLocation1, aLocation2):

 """

 Returns the ground distance in metres between two LocationGlobal

objects.

 This method is an approximation, and will not be accurate over

large distances and close to the

 earth's poles. It comes from the ArduPilot test code:

https://github.com/diydrones/ardupilot/blob/master/Tools/autotest/com

mon.py

 """

 dlat = aLocation2.lat - aLocation1.lat

 dlong = aLocation2.lon - aLocation1.lon

 return math.sqrt((dlat*dlat) + (dlong*dlong)) * 1.113195e5

#initializes drone

#connection string is the port at which the rpi connects to drone

#isSimulator is a boolean value for whether this is being used on the

actual drone or a simulator

def initializeDrone(connectionString, isSimulator):

 if isSimulator:

 sitl = SITL()

 sitl.download('copter', '3.3', verbose=True)

 sitl_args = ['-I0', '--model', 'quad',

'--home=-35.363261,149.165230,584,353']

 sitl.launch(sitl_args, await_ready=True, restart=True)

 print "Connecting to vehicle on: 'tcp:127.0.0.1:5760'"

 vehicle = connect('tcp:127.0.0.1:5760', wait_ready=True)

 # print information about vehicle

 print "Global Location: %s" % vehicle.location.global_frame

 print "Global Location (relative altitude): %s" %

vehicle.location.global_relative_frame

46

 print "Local Location: %s" % vehicle.location.local_frame

#NED

 print "Attitude: %s" % vehicle.attitude

 print "Velocity: %s" % vehicle.velocity

 print "GPS: %s" % vehicle.gps_0

 print "Groundspeed: %s" % vehicle.groundspeed

 print "Airspeed: %s" % vehicle.airspeed

 print "Battery: %s" % vehicle.battery

 print "EKF OK?: %s" % vehicle.ekf_ok

 print "Last Heartbeat: %s" % vehicle.last_heartbeat

 print "Rangefinder: %s" % vehicle.rangefinder

 print "Rangefinder distance: %s" %

vehicle.rangefinder.distance

 print "Rangefinder voltage: %s" % vehicle.rangefinder.voltage

 print "Heading: %s" % vehicle.heading

 print "Is Armable?: %s" % vehicle.is_armable

 print "System status: %s" % vehicle.system_status.state

 print "Mode: %s" % vehicle.mode.name # settable

 print "Armed: %s" % vehicle.armed

 else:

 # Connect to the Vehicle

 print 'Connecting to vehicle;'

 vehicle = connect(connectionString, wait_ready=True)

 # print information about vehicle

 print "Global Location: %s" % vehicle.location.global_frame

 print "Global Location (relative altitude): %s" %

vehicle.location.global_relative_frame

 print "Local Location: %s" % vehicle.location.local_frame

#NED

 print "Attitude: %s" % vehicle.attitude

 print "Velocity: %s" % vehicle.velocity

 print "GPS: %s" % vehicle.gps_0

 print "Groundspeed: %s" % vehicle.groundspeed

 print "Airspeed: %s" % vehicle.airspeed

 print "Battery: %s" % vehicle.battery

 print "EKF OK?: %s" % vehicle.ekf_ok

 print "Last Heartbeat: %s" % vehicle.last_heartbeat

 print "Rangefinder: %s" % vehicle.rangefinder

 print "Rangefinder distance: %s" %

vehicle.rangefinder.distance

 print "Rangefinder voltage: %s" % vehicle.rangefinder.voltage

 print "Heading: %s" % vehicle.heading

 print "Is Armable?: %s" % vehicle.is_armable

47

 print "System status: %s" % vehicle.system_status.state

 print "Mode: %s" % vehicle.mode.name # settable

 print "Armed: %s" % vehicle.armed

#flies a vehicle to a target altitude

def arm_and_takeoff(aTargetAltitude):

 #Arms vehicle and fly to aTargetAltitude.

 print "Basic pre-arm checks"

 # Don't try to arm until autopilot is ready

 while not vehicle.is_armable:

 print " Waiting for vehicle to initialise..."

 time.sleep(1)

 print "Arming motors"

 # Copter should arm in GUIDED mode

 vehicle.mode = VehicleMode("GUIDED")

 vehicle.armed = True

 # Confirm vehicle armed before attempting to take off

 while not vehicle.armed:

 print " Waiting for arming..."

 time.sleep(1)

 print "Taking off!"

 vehicle.simple_takeoff(aTargetAltitude)

 # Wait until the vehicle reaches a safe height before processing

the goto (otherwise the command

 # after Vehicle.simple_takeoff will execute immediately).

 while True:

 print " Altitude: ",

vehicle.location.global_relative_frame.alt

 #Break and return from function just below target altitude.

 if

vehicle.location.global_relative_frame.alt>=aTargetAltitude*0.95:

 print "Reached target altitude"

 break

 time.sleep(1)

#stops program and counts down for a certain number of seconds

def countdown(amtTime):

 i = 0

 while i <= amtTime:

48

 print("COUNTDOWN: "+str(amtTime-i))

 time.sleep(1)

 i = i+1

#stops program and countrs down for a certain number of seconds while

displaying the altitude

def countdownAlt(amTime):

 o = 0

 while o <= amTime:

 print("COUNTDOWN: "+str(amTime-o))

 print " Altitude: ",

vehicle.location.global_relative_frame.alt

 time.sleep(1)

 o = o+1

#initializes and takes off drone

#alt: alitutude in meters

#countdownSeconds = number of seconds till takeoff

#isSim = true if we are using a simulator

#connectString = port at which the rpi is connected to drone

"/dev/tty/ACM0" for usb

def takeOff(alt, countdownSeconds, isSim, connectString):

 initializeDrone("/dev/tty/ACM0", isSim)

 countdown(countdownSeconds)

 vehicle.airspeed=3

 arm_and_takeoff(alt)

def moveVehicle(velocity_x, velocity_y, velocity_z, duration):

 """

 Move vehicle in direction based on specified velocity vectors.

 """

 msg =

vehicle.message_factory.set_position_target_local_ned_encode(

 0, # time_boot_ms (not used)

 0, 0, # target system, target component

 mavutil.mavlink.MAV_FRAME_LOCAL_NED, # frame

 0b0000111111000111, # type_mask (only speeds enabled)

 0, 0, 0, # x, y, z positions (not used)

 velocity_x, velocity_y, velocity_z, # x, y, z velocity in m/s

 0, 0, 0, # x, y, z acceleration (not supported yet, ignored

in GCS_Mavlink)

 0, 0) # yaw, yaw_rate (not supported yet, ignored in

GCS_Mavlink)

49

 # send command to vehicle on 1 Hz cycle

 for x in range(0,duration):

 vehicle.send_mavlink(msg)

 time.sleep(1)

#goto helper function for drone

def goToLocation(targetLocation, gotoFunction=vehicle.simple_goto):

 currentLocation=vehicle.location.global_relative_frame

 targetDistance=get_distance_metres(currentLocation,

targetLocation)

 gotoFunction(targetLocation)

 while vehicle.mode.name=="GUIDED": #Stop action if we are no

longer in guided mode.

remainingDistance=get_distance_metres(vehicle.location.global_frame,

targetLocation)

 print "Distance to target: ", remainingDistance

 if remainingDistance<=targetDistance*0.01: #Just below

target, in case of undershoot.

 print "Reached target"

 break;

 time.sleep(2)

########ACTUAL PROGRAM STARTS HERE ALL FUNCTIONS GO ABOVE

THIS############

safePointArray = [SafeLocation(Location(0,0)),

SafeLocation(Location(0,0)), SafeLocation(Location(0,0)),

SafeLocation(Location(0,0))]

squareLength = input("Input side length of square to survey in

meters: ")

takeOff(5,5,True,"/dev/tty/AMA0")

Set airspeed using attribute

vehicle.airspeed = 1 #m/s

Set groundspeed using attribute

vehicle.groundspeed = 1 #m/s

homeL = vehicle.home_location

homeLat = homeL.lat

homeLong = homeL.lon

50

home = Location(homeLat, homeLong)

currLoc = Location(0,0);

numFiveMeterSegments = int(round(squareLength/5))

trackFiveMeterSegments = numFiveMeterSegments

for i in range(0,numFiveMeterSegments):

 #move the vehicle north for 5 seconds at a speed of 1 m/s

 moveVehicle(1,0,0,5)

 #update currLoc variable to store location

 currLoc =

Location(vehicle.location.global_frame.lat,vehicle.location.global_fr

ame.lon)

 trackFiveMeterSegments = trackFiveMeterSegments - 1

 #finds num people

 numPeople = findNumPeople()

 if numPeople >= 1:

 currLoc =

Location(vehicle.location.global_frame.lat,vehicle.location.global_fr

ame.lon)

 index = closestSafePoint(currLoc, safePointArray)

 safePointLocation =

LocationGlobalRelative(safePointArray[index[0]].location.latitude,

safePointArray[index[0]].location.longitude, 5)

 goToLocation(safePointLocation)

 time.sleep(5)

 goToLocation(currLoc)

 if trackFiveMeterSegments == 0:

 break;

print "Returning to Launch"

vehicle.mode = VehicleMode("LAND")

countdownAlt(30)

#Close vehicle object before exiting script

print "Close vehicle object"

vehicle.close()

51

Pathfinding Code
This code was interfaced with python through a C++ helper library called Boost Python. We

wrote wrappers in C++ that made compiled code available through a python library. The only

drawback to this is that it needs to be recompiled from source every different system it is run on.

The wrapper is named dstarimplement.cpp.

Dstar.cpp
/*BY SOHAN VICHARE AND ADIYAN KAUL, BASED ON AND BUILT FROM

 * James Neufeld (neufeld@cs.ualberta.ca)

 * and Arek Sredzki (arek@sredzki.com)

 */

#include "Dstar.h"

#ifdef USE_OPEN_GL

#ifdef MACOS

#include <OpenGL/gl.h>

#else

#include <GL/gl.h>

#endif

#endif

/* void Dstar::Dstar()

 * --------------------------

 * Constructor sets constants.

 */

Dstar::Dstar() {

 maxSteps = 80000; // node expansions before we give up

 C1 = 1; // cost of an unseen cell

}

/* float Dstar::keyHashCode(state u)

52

 * --------------------------

 * Returns the key hash code for the state u, this is used to compare

 * a state that have been updated

 */

float Dstar::keyHashCode(state u) {

 return (float)(u.k.first + 1193*u.k.second);

}

/* bool Dstar::isValid(state u)

 * --------------------------

 * Returns true if state u is on the open list or not by checking if

 * it is in the hash table.

 */

bool Dstar::isValid(state u) {

 ds_oh::iterator cur = openHash.find(u);

 if (cur == openHash.end()) return false;

 if (!close(keyHashCode(u), cur->second)) return false;

 return true;

}

/* void Dstar::getPath()

 * --------------------------

 * Returns the path created by replan()

 */

list<state> Dstar::getPath() {

 return path;

}

int state::getX(){

 return x;

}

int state::getY(){

 return y;

}

/* bool Dstar::occupied(state u)

 * --------------------------

 * returns true if the cell is occupied (non-traversable), false

 * otherwise. non-traversable are marked with a cost < 0.

 */

bool Dstar::occupied(state u) {

 ds_ch::iterator cur = cellHash.find(u);

53

 if (cur == cellHash.end()) return false;

 return (cur->second.cost < 0);

}

/* void Dstar::init(int sX, int sY, int gX, int gY)

 * --------------------------

 * Init dstar with start and goal coordinates, rest is as per

 * [S. Koenig, 2002]

 */

void Dstar::init(int sX, int sY, int gX, int gY) {

 cellHash.clear();

 path.clear();

 openHash.clear();

 while(!openList.empty()) openList.pop();

 k_m = 0;

 s_start.x = sX;

 s_start.y = sY;

 s_goal.x = gX;

 s_goal.y = gY;

 cellInfo tmp;

 tmp.g = tmp.rhs = 0;

 tmp.cost = C1;

 cellHash[s_goal] = tmp;

 tmp.g = tmp.rhs = heuristic(s_start,s_goal);

 tmp.cost = C1;

 cellHash[s_start] = tmp;

 s_start = calculateKey(s_start);

 s_last = s_start;

}

/* void Dstar::makeNewCell(state u)

 * --------------------------

 * Checks if a cell is in the hash table, if not it adds it in.

 */

void Dstar::makeNewCell(state u) {

 if (cellHash.find(u) != cellHash.end()) return;

 cellInfo tmp;

 tmp.g = tmp.rhs = heuristic(u,s_goal);

54

 tmp.cost = C1;

 cellHash[u] = tmp;

}

/* double Dstar::getG(state u)

 * --------------------------

 * Returns the G value for state u.

 */

double Dstar::getG(state u) {

 if (cellHash.find(u) == cellHash.end())

 return heuristic(u,s_goal);

 return cellHash[u].g;

}

/* double Dstar::getRHS(state u)

 * --------------------------

 * Returns the rhs value for state u.

 */

double Dstar::getRHS(state u) {

 if (u == s_goal) return 0;

 if (cellHash.find(u) == cellHash.end())

 return heuristic(u,s_goal);

 return cellHash[u].rhs;

}

/* void Dstar::setG(state u, double g)

 * --------------------------

 * Sets the G value for state u

 */

void Dstar::setG(state u, double g) {

 makeNewCell(u);

 cellHash[u].g = g;

}

/* void Dstar::setRHS(state u, double rhs)

 * --------------------------

 * Sets the rhs value for state u

 */

double Dstar::setRHS(state u, double rhs) {

 makeNewCell(u);

55

 cellHash[u].rhs = rhs;

}

/* double Dstar::eightCondist(state a, state b)

 * --------------------------

 * Returns the 8-way distance between state a and state b.

 */

double Dstar::eightCondist(state a, state b) {

 double temp;

 double min = fabs(a.x - b.x);

 double max = fabs(a.y - b.y);

 if (min > max) {

 double temp = min;

 min = max;

 max = temp;

 }

 return ((M_SQRT2-1.0)*min + max);

}

/* int Dstar::computeShortestPath()

 * --------------------------

 * As per [S. Koenig, 2002] except for 2 main modifications:

 * 1. We stop planning after a number of steps, 'maxsteps' we do this

 * because this algorithm can plan forever if the start is

 * surrounded by obstacles.

 * 2. We lazily remove states from the open list so we never have to

 * iterate through it.

 */

int Dstar::computeShortestPath() {

 list<state> s;

 list<state>::iterator i;

 if (openList.empty()) return 1;

 int k=0;

 while ((!openList.empty()) &&

 (openList.top() < (s_start = calculateKey(s_start))) ||

 (getRHS(s_start) != getG(s_start))) {

 if (k++ > maxSteps) {

 fprintf(stderr, "At maxsteps\n");

 return -1;

 }

 state u;

56

 bool test = (getRHS(s_start) != getG(s_start));

 // lazy remove

 while(1) {

 if (openList.empty()) return 1;

 u = openList.top();

 openList.pop();

 if (!isValid(u)) continue;

 if (!(u < s_start) && (!test)) return 2;

 break;

 }

 ds_oh::iterator cur = openHash.find(u);

 openHash.erase(cur);

 state k_old = u;

 if (k_old < calculateKey(u)) { // u is out of date

 insert(u);

 } else if (getG(u) > getRHS(u)) { // needs update (got better)

 setG(u,getRHS(u));

 getPred(u,s);

 for (i=s.begin();i != s.end(); i++) {

 updateVertex(*i);

 }

 } else { // g <= rhs, state has got worse

 setG(u,INFINITY);

 getPred(u,s);

 for (i=s.begin();i != s.end(); i++) {

 updateVertex(*i);

 }

 updateVertex(u);

 }

 }

 return 0;

}

/* bool Dstar::close(double x, double y)

 * --------------------------

 * Returns true if x and y are within 10E-5, false otherwise

 */

bool Dstar::close(double x, double y) {

 if (isinf(x) && isinf(y)) return true;

 return (fabs(x-y) < 0.00001);

57

}

/* void Dstar::updateVertex(state u)

 * --------------------------

 * As per [S. Koenig, 2002]

 */

void Dstar::updateVertex(state u) {

 list<state> s;

 list<state>::iterator i;

 if (u != s_goal) {

 getSucc(u,s);

 double tmp = INFINITY;

 double tmp2;

 for (i=s.begin();i != s.end(); i++) {

 tmp2 = getG(*i) + cost(u,*i);

 if (tmp2 < tmp) tmp = tmp2;

 }

 if (!close(getRHS(u),tmp)) setRHS(u,tmp);

 }

 if (!close(getG(u),getRHS(u))) insert(u);

}

/* void Dstar::insert(state u)

 * --------------------------

 * Inserts state u into openList and openHash.

 */

void Dstar::insert(state u) {

 ds_oh::iterator cur;

 float csum;

 u = calculateKey(u);

 cur = openHash.find(u);

 csum = keyHashCode(u);

 // return if cell is already in list. TODO: this should be

 // uncommented except it introduces a bug, I suspect that there is

a

 // bug somewhere else and having duplicates in the openList queue

 // hides the problem...

 //if ((cur != openHash.end()) && (close(csum,cur->second))) return;

 openHash[u] = csum;

 openList.push(u);

58

}

/* void Dstar::remove(state u)

 * --------------------------

 * Removes state u from openHash. The state is removed from the

 * openList lazilily (in replan) to save computation.

 */

void Dstar::remove(state u) {

 ds_oh::iterator cur = openHash.find(u);

 if (cur == openHash.end()) return;

 openHash.erase(cur);

}

/* double Dstar::trueDist(state a, state b)

 * --------------------------

 * Euclidean cost between state a and state b.

 */

double Dstar::trueDist(state a, state b) {

 float x = a.x-b.x;

 float y = a.y-b.y;

 return sqrt(x*x + y*y);

}

/* double Dstar::heuristic(state a, state b)

 * --------------------------

 * Pretty self explanitory, the heristic we use is the 8-way distance

 * scaled by a constant C1 (should be set to <= min cost).

 */

double Dstar::heuristic(state a, state b) {

 return eightCondist(a,b)*C1;

}

/* state Dstar::calculateKey(state u)

 * --------------------------

 * As per [S. Koenig, 2002]

 */

state Dstar::calculateKey(state u) {

 double val = fmin(getRHS(u),getG(u));

 u.k.first = val + heuristic(u,s_start) + k_m;

 u.k.second = val;

 return u;

59

}

/* double Dstar::cost(state a, state b)

 * --------------------------

 * Returns the cost of moving from state a to state b. This could be

 * either the cost of moving off state a or onto state b, we went

with

 * the former. This is also the 8-way cost.

 */

double Dstar::cost(state a, state b) {

 int xd = fabs(a.x-b.x);

 int yd = fabs(a.y-b.y);

 double scale = 1;

 if (xd+yd>1) scale = M_SQRT2;

 if (cellHash.count(a) == 0) return scale*C1;

 return scale*cellHash[a].cost;

}

/* void Dstar::updateCell(int x, int y, double val)

 * --------------------------

 * As per [S. Koenig, 2002]

 */

void Dstar::updateCell(int x, int y, double val) {

 state u;

 u.x = x;

 u.y = y;

 if ((u == s_start) || (u == s_goal)) return;

 makeNewCell(u);

 cellHash[u].cost = val;

 updateVertex(u);

}

/* void Dstar::getSucc(state u,list<state> &s)

 * --------------------------

 * Returns a list of successor states for state u, since this is an

 * 8-way graph this list contains all of a cells neighbours. Unless

 * the cell is occupied in which case it has no successors.

 */

void Dstar::getSucc(state u,list<state> &s) {

60

 s.clear();

 u.k.first = -1;

 u.k.second = -1;

 if (occupied(u)) return;

 u.x += 1;

 s.push_front(u);

 u.y += 1;

 s.push_front(u);

 u.x -= 1;

 s.push_front(u);

 u.x -= 1;

 s.push_front(u);

 u.y -= 1;

 s.push_front(u);

 u.y -= 1;

 s.push_front(u);

 u.x += 1;

 s.push_front(u);

 u.x += 1;

 s.push_front(u);

}

/* void Dstar::getPred(state u,list<state> &s)

 * --------------------------

 * Returns a list of all the predecessor states for state u. Since

 * this is for an 8-way connected graph the list contails all the

 * neighbours for state u. Occupied neighbours are not added to the

 * list.

 */

void Dstar::getPred(state u,list<state> &s) {

 s.clear();

 u.k.first = -1;

 u.k.second = -1;

 u.x += 1;

 if (!occupied(u)) s.push_front(u);

 u.y += 1;

 if (!occupied(u)) s.push_front(u);

 u.x -= 1;

 if (!occupied(u)) s.push_front(u);

 u.x -= 1;

 if (!occupied(u)) s.push_front(u);

 u.y -= 1;

61

 if (!occupied(u)) s.push_front(u);

 u.y -= 1;

 if (!occupied(u)) s.push_front(u);

 u.x += 1;

 if (!occupied(u)) s.push_front(u);

 u.x += 1;

 if (!occupied(u)) s.push_front(u);

}

/* void Dstar::updateStart(int x, int y)

 * --------------------------

 * Update the position of the robot, this does not force a replan.

 */

void Dstar::updateStart(int x, int y) {

 s_start.x = x;

 s_start.y = y;

 k_m += heuristic(s_last,s_start);

 s_start = calculateKey(s_start);

 s_last = s_start;

}

/* void Dstar::updateGoal(int x, int y)

 * --------------------------

 * This is somewhat of a hack, to change the position of the goal we

 * first save all of the non-empty on the map, clear the map, move

the

 * goal, and re-add all of non-empty cells. Since most of these cells

 * are not between the start and goal this does not seem to hurt

 * performance too much. Also it free's up a good deal of memory we

 * likely no longer use.

 */

void Dstar::updateGoal(int x, int y) {

 list< pair<ipoint2, double> > toAdd;

 pair<ipoint2, double> tp;

 ds_ch::iterator i;

 list< pair<ipoint2, double> >::iterator kk;

 for(i=cellHash.begin(); i!=cellHash.end(); i++) {

 if (!close(i->second.cost, C1)) {

 tp.first.x = i->first.x;

 tp.first.y = i->first.y;

62

 tp.second = i->second.cost;

 toAdd.push_back(tp);

 }

 }

 cellHash.clear();

 openHash.clear();

 while(!openList.empty())

 openList.pop();

 k_m = 0;

 s_goal.x = x;

 s_goal.y = y;

 cellInfo tmp;

 tmp.g = tmp.rhs = 0;

 tmp.cost = C1;

 cellHash[s_goal] = tmp;

 tmp.g = tmp.rhs = heuristic(s_start,s_goal);

 tmp.cost = C1;

 cellHash[s_start] = tmp;

 s_start = calculateKey(s_start);

 s_last = s_start;

 for (kk=toAdd.begin(); kk != toAdd.end(); kk++) {

 updateCell(kk->first.x, kk->first.y, kk->second);

 }

}

/* bool Dstar::replan()

 * --------------------------

 * Updates the costs for all cells and computes the shortest path to

 * goal. Returns true if a path is found, false otherwise. The path

is

 * computed by doing a greedy search over the cost+g values in each

 * cells. In order to get around the problem of the robot taking a

 * path that is near a 45 degree angle to goal we break ties based on

 * the metric euclidean(state, goal) + euclidean(state,start).

 */

bool Dstar::replan() {

63

 path.clear();

 int res = computeShortestPath();

 //printf("res: %d ols: %d ohs: %d tk: [%f %f] sk: [%f %f] sgr:

(%f,%f)\n",res,openList.size(),openHash.size(),openList.top().k.first

,openList.top().k.second, s_start.k.first,

s_start.k.second,getRHS(s_start),getG(s_start));

 if (res < 0) {

 fprintf(stderr, "NO PATH TO GOAL\n");

 return false;

 }

 list<state> n;

 list<state>::iterator i;

 state cur = s_start;

 if (isinf(getG(s_start))) {

 fprintf(stderr, "NO PATH TO GOAL\n");

 return false;

 }

 while(cur != s_goal) {

 path.push_back(cur);

 getSucc(cur, n);

 if (n.empty()) {

 fprintf(stderr, "NO PATH TO GOAL\n");

 return false;

 }

 double cmin = INFINITY;

 double tmin;

 state smin;

 for (i=n.begin(); i!=n.end(); i++) {

 //if (occupied(*i)) continue;

 double val = cost(cur,*i);

 double val2 = trueDist(*i,s_goal) + trueDist(s_start,*i); //

(Euclidean) cost to goal + cost to pred

 val += getG(*i);

 if (close(val,cmin)) {

 if (tmin > val2) {

 tmin = val2;

 cmin = val;

 smin = *i;

64

 }

 } else if (val < cmin) {

 tmin = val2;

 cmin = val;

 smin = *i;

 }

 }

 n.clear();

 cur = smin;

 }

 path.push_back(s_goal);

 return true;

}

#ifdef USE_OPEN_GL

void Dstar::draw() {

 ds_ch::iterator iter;

 ds_oh::iterator iter1;

 state t;

 list<state>::iterator iter2;

 glBegin(GL_QUADS);

 for(iter=cellHash.begin(); iter != cellHash.end(); iter++) {

 if (iter->second.cost == 1) glColor3f(0,1,0);

 else if (iter->second.cost < 0) glColor3f(1,0,0);

 else glColor3f(0,0,1);

 drawCell(iter->first,0.45);

 }

 glColor3f(1,1,0);

 drawCell(s_start,0.45);

 glColor3f(1,0,1);

 drawCell(s_goal,0.45);

 for(iter1=openHash.begin(); iter1 != openHash.end(); iter1++) {

 glColor3f(0.4,0,0.8);

 drawCell(iter1->first, 0.2);

 }

 glEnd();

 glLineWidth(4);

 glBegin(GL_LINE_STRIP);

 glColor3f(0.6, 0.1, 0.4);

65

 for(iter2=path.begin(); iter2 != path.end(); iter2++) {

 glVertex3f(iter2->x, iter2->y, 0.2);

 }

 glEnd();

}

void Dstar::drawCell(state s, float size) {

 float x = s.x;

 float y = s.y;

 glVertex2f(x - size, y - size);

 glVertex2f(x + size, y - size);

 glVertex2f(x + size, y + size);

 glVertex2f(x - size, y + size);

}

#else

void Dstar::draw() {}

void Dstar::drawCell(state s, float z) {}

#endif

Dstar.h
/*BY SOHAN VICHARE, BASED ON AND BUILT FROM

 * James Neufeld (neufeld@cs.ualberta.ca)

 * and Arek Sredzki (arek@sredzki.com)

 */

#ifndef DSTAR_H

#define DSTAR_H

#include <math.h>

#include <stack>

#include <queue>

#include <list>

#include <stdio.h>

#include <ext/hash_map>

66

using namespace std;

using namespace __gnu_cxx;

class state {

 public:

 int x;

 int y;

 int getX();

 int getY();

 pair<double,double> k;

 bool operator == (const state &s2) const {

 return ((x == s2.x) && (y == s2.y));

 }

 bool operator != (const state &s2) const {

 return ((x != s2.x) || (y != s2.y));

 }

 bool operator > (const state &s2) const {

 if (k.first-0.00001 > s2.k.first) return true;

 else if (k.first < s2.k.first-0.00001) return false;

 return k.second > s2.k.second;

 }

 bool operator <= (const state &s2) const {

 if (k.first < s2.k.first) return true;

 else if (k.first > s2.k.first) return false;

 return k.second < s2.k.second + 0.00001;

 }

 bool operator < (const state &s2) const {

 if (k.first + 0.000001 < s2.k.first) return true;

 else if (k.first - 0.000001 > s2.k.first) return false;

 return k.second < s2.k.second;

 }

};

struct ipoint2 {

 int x,y;

};

struct cellInfo {

 double g;

 double rhs;

67

 double cost;

};

class state_hash {

 public:

 size_t operator()(const state &s) const {

 return s.x + 34245*s.y;

 }

};

typedef priority_queue<state, vector<state>, greater<state> > ds_pq;

typedef hash_map<state,cellInfo, state_hash, equal_to<state> > ds_ch;

typedef hash_map<state, float, state_hash, equal_to<state> > ds_oh;

class Dstar {

 public:

 Dstar();

 void init(int sX, int sY, int gX, int gY);

 void updateCell(int x, int y, double val);

 void updateStart(int x, int y);

 void updateGoal(int x, int y);

 bool replan();

 void draw();

 void drawCell(state s,float z);

 list<state> getPath();

 private:

 list<state> path;

 double C1;

 double k_m;

 state s_start, s_goal, s_last;

 int maxSteps;

 ds_pq openList;

 ds_ch cellHash;

 ds_oh openHash;

 bool close(double x, double y);

 void makeNewCell(state u);

 double getG(state u);

68

 double getRHS(state u);

 void setG(state u, double g);

 double setRHS(state u, double rhs);

 double eightCondist(state a, state b);

 int computeShortestPath();

 void updateVertex(state u);

 void insert(state u);

 void remove(state u);

 double trueDist(state a, state b);

 double heuristic(state a, state b);

 state calculateKey(state u);

 void getSucc(state u, list<state> &s);

 void getPred(state u, list<state> &s);

 double cost(state a, state b);

 bool occupied(state u);

 bool isValid(state u);

 float keyHashCode(state u);

};

#endif

DstarImplement.cpp

 //PYTHON WRAPPER FOR DSTARLITE ALGORITHM

#include "Dstar.h"

#include <iostream>

#include <list>

#include "python.hpp"

using namespace std;

Dstar *dstar = new Dstar();

list<state> mypath;

void dStarInit(int startX, int startY, int goalX, int goalY)

{

 dstar->init(startX,startY,goalX,goalY);

}

void dStarUpdateGoal(int goalX, int goalY)

{

 dstar->updateGoal(goalX, goalY);

}

69

void dStarUpdateStart(int startX, int startY)

{

 dstar->updateStart(startX, startY);

}

void dStarAddBlock(int xCoor, int yCoor)

{

 dstar->updateCell(xCoor, yCoor, -1);

}

void dStarUpdateCell(int xCoor, int yCoor, int cost)

{

 dstar->updateCell(xCoor, yCoor, cost);

}

void dStarReplan()

{

 dstar->replan();

}

void dStarUpdatePathVar()

{

 mypath = dstar->getPath();

}

int dStarGetPathLength()

{

 mypath = dstar->getPath();

 return mypath.size();

}

int dStarGetXAtIndex(int index)

{

 int xToReturn;

 auto front = mypath.begin();

 for (int i = 0; i <= index; i++){

 std::list<state>::iterator it = mypath.begin();

 std::advance(it, i);

 xToReturn = it->getX();

 }

 return xToReturn;

}

int dStarGetYAtIndex(int index)

{

 int yToReturn;

 auto front = mypath.begin();

 for (int i = 0; i <= index; i++){

70

 std::list<state>::iterator it = mypath.begin();

 std::advance(it, i);

 yToReturn = it->getY();

 }

 return yToReturn;

}

#include <boost/python/module.hpp>

#include <boost/python/def.hpp>

using namespace boost::python;

BOOST_PYTHON_MODULE(dstarlite)

{

 def("init", dStarInit);

 def("addBlock", dStarAddBlock);

 def("replan", dStarReplan);

 def("updatePathVar", dStarUpdatePathVar);

 def("getPathLength", dStarGetPathLength);

 def("getXAtIndex", dStarGetXAtIndex);

 def("getYAtIndex", dStarGetYAtIndex);

 def("updateCell", dStarUpdateCell);

 def("updateGoal", dStarUpdateGoal);

 def("updateStart", dStarUpdateStart);

}

PathAlgorithm.py
-*- coding: utf-8 -*-

#BY SOHAN VICHARE Adiyan Kaul 2015

#testing out dstarlite dynamic pathfinding algorithm and logic for

finding closest safe point

#import needed dependiences

from random import randint

import cv2

import math

import matplotlib.pyplot as plot

import matplotlib.patches as mpatches

import matplotlib.font_manager as fm

import dstarlite

#define location class that stores latitude and longitude

71

class Location:

 "Basic Location class, used to store latitude and longitude"

 def __init__(self, latitude, longitude):

 self.latitude = latitude

 self.longitude = longitude

#define Person class, which stores location data, closest safe point

data for a person

class Person:

 "Person class, used to store data for a person. Has two

attributes, location (which stores the person's location), and

safePointArray (which stores an array of safePoints in order of which

is closest to the location)"

 def __init__(self,location):

 self.location = location

 #an array of safe points, in order of what is closest to the

person

 self.safePointArray = [];

 #define function that finds the closes safe point to a given

location, returns an array of array indexes, where the first one is

the closest and so on

 def closestSafePoint(self, safePointLocationArray):

 #define array that will be returned

 closestPointIndexArray = [];

 usedIndexArray = [];

 closestDist = 1000;

 closestIndex = 0;

 for index, item in enumerate(safePointLocationArray):

 for ind, itm in enumerate(safePointLocationArray):

 if ind not in usedIndexArray:

 dist = distanceBetweenLocations(itm.location,

self.location, "");

 if dist <= closestDist:

 closestDist = dist;

 closestIndex = ind;

 if closestIndex not in usedIndexArray:

 usedIndexArray.append(closestIndex);

 closestPointIndexArray.append(closestIndex);

 closestDist = 1000;

 return closestPointIndexArray;

72

#define SafeLocation class, which stores location data, which people

are at each Safe Location

class SafeLocation:

 "Safe Location class, used to store data for a safe location. Has

two attributes, one is location (a location object which stores the

location), and the second is peopleArrivedArray, which is an array

that stores the people who have reached this location."

 def __init__(self, location):

 self.location = location

 #an array of Person objects, used to store what people are

already at the safeLocation

 self.peopleArrivedArray = [];

#define helper method to print arrays with locations so that they are

easy to see

def printLocationArray(locationArray):

 for item in locationArray:

 print item.latitude

 print item.longitude

 print " "

#define helper method to get an array of the locations object from an

array of a person, safelocation, or any other object that has

location as a property

def getLocationsArray(safeLocsArray):

 returnArray = []

 for item in safeLocsArray:

 returnArray.append(item.location);

 return returnArray;

#define helper class to plot a location array's points, takes in

array of location Arrays

def plotLocationArray(locationArray, color):

 xcoords = []

 ycoords = []

 for item in locationArray:

 xcoords.append(item.latitude);

 ycoords.append(item.longitude);

 plot.plot(xcoords,ycoords,color);

 plot.axis([0, 30, 0, 30])

#distance formula function, finds distance between two location

objects, accounting for the earth's spherical shape (assumes that

earth is a sphere)

def distanceBetweenLocations(location1, location2, distanceUnit):

73

 # Convert latitude and longitude to spherical coordinates in

radians.

 degreesToRadians = math.pi/180.0

 # phi = 90 - latitude

 phi1 = (90.0 - location1.latitude)*degreesToRadians

 phi2 = (90.0 - location2.latitude)*degreesToRadians

 # theta = longitude

 theta1 = location1.longitude*degreesToRadians

 theta2 = location2.longitude*degreesToRadians

 # Compute spherical distance from spherical coordinates.

 # For two locations in spherical coordinates

 # (1, theta, phi) and (1, theta', phi')

 # cosine(arc length) =

 # sin phi sin phi' cos(theta-theta') + cos phi cos phi'

 # distance = rho * arc length

 cos = (math.sin(phi1)*math.sin(phi2)*math.cos(theta1 - theta2) +

 math.cos(phi1)*math.cos(phi2))

 arc = math.acos(cos)

 # multiply and return arc by the right distance unit, miles or

kilometers

 unit = 1;

 if distanceUnit == "miles":

 unit = 3960

 if distanceUnit == "kilometers":

 unit = 6737

 return arc * unit;

#function to get a location array from dstarlite -> returns an array

of locations which is the steps for the path the drone will take

def dStarLiteGetLocationArray():

 arrToReturn = [];

 dstarlite.updatePathVar();

 pathLength = dstarlite.getPathLength();

 for getindex in range(0, pathLength):

 latitud = dstarlite.getXAtIndex(getindex);

 longitud = dstarlite.getYAtIndex(getindex);

 locashun = Location(latitud,longitud);

 arrToReturn.append(locashun);

 return arrToReturn

74

#initialize dstarlite at a random location and give it a random goal

plot.figure(2);

x1 = randint(-10, -8)

y1 = randint(-10, 8)

x2 = randint(8, 10)

y2 = randint(8, 10)

plot.axis([-11,11,-11,11])

plot.plot([x1,x2],[y1,y2],'ro');

dstarlite.init(x1, y1, x2, y2);

#add random obstacles

for x in range(0,90):

 blockX = randint(-10, 10)

 blockY = randint(-10, 10)

 dstarlite.addBlock(blockX, blockY);

 plot.plot([blockX],[blockY],'go');

#replan and update the path variable for dstar

dstarlite.replan();

dstarlite.updatePathVar();

pathArray = dStarLiteGetLocationArray();

xArr = [];

yArr = [];

for item in pathArray:

 xArr.append(item.latitude);

 yArr.append(item.longitude);

plot.plot(xArr,yArr,'b');

printLocationArray(dStarLiteGetLocationArray());

#define arrays that store safe location and person location variables

safeLocationArray = [];

personArray = [];

#change plot

plot.figure(1);

#populate personLocs

for x in range(0, 4):

 lat = randint(1,20)

 lon = randint(1,20)

 loc = Location(lat,lon);

 p = Person(loc)

 personArray.append(p);

#populate safeLocs

for x in range(0, 2):

 lat = randint(1,20)

75

 lon = randint(1,20)

 loc = Location(lat,lon);

 s = SafeLocation(loc);

 safeLocationArray.append(s);

#plot both arrays on the graph

plotLocationArray(getLocationsArray(personArray),'ro');

plotLocationArray(getLocationsArray(safeLocationArray),'bo');

#LOGIC TO FIND CLOSEST SAFE POINT TO EACH PERSON AND DRAW A LINE

BETWEEN THE RANDOMLY GENERATED POINTS

for item in personArray:

 colorsArray = ['m','k','y','c','g','r','b',]

 personLocation = item.location

 plot.plot(personLocation.latitude,personLocation.longitude,'bo')

 closestSafeLocIndexArray =

item.closestSafePoint(safeLocationArray);

 for index, item in enumerate(closestSafeLocIndexArray):

 closestSafeLoc = safeLocationArray[item];

 plot.plot(closestSafeLoc.location.latitude,

closestSafeLoc.location.longitude, 'ro');

 plot.plot([closestSafeLoc.location.latitude,

personLocation.latitude],[closestSafeLoc.location.longitude,

personLocation.longitude],colorsArray[index]);

#show plot and create legend

safe_points = mpatches.Patch(color='red', label='Red dots = Safe

Points (designated by user)')

person_points = mpatches.Patch(color='blue', label='Blue dots =

People (found by drone)')

line = mpatches.Patch(color="magenta", label='1st option')

line1 = mpatches.Patch(color="black", label='2nd option')

line2 = mpatches.Patch(color="yellow", label='3rd option')

line3 = mpatches.Patch(color="cyan", label='4th option')

line4 = mpatches.Patch(color="green", label='5th option')

line5 = mpatches.Patch(color="red", label='6th option')

line6 = mpatches.Patch(color="blue", label='7th option')

prop = fm.FontProperties(size=14)

plot.legend(handles=[safe_points, person_points, line, line1, line2,

line3, line4, line5, line6], prop=prop)

plot.show();

76

testflight1.py
from dronekit import connect, VehicleMode, LocationGlobalRelative

import time

Connect to the Vehicle

print 'Connecting to vehicle;'

vehicle = connect("/dev/ttyACM0", wait_ready=True)

vehicle is an instance of the Vehicle class

print "Global Location: %s" % vehicle.location.global_frame

print "Global Location (relative altitude): %s" %

vehicle.location.global_relative_frame

print "Local Location: %s" % vehicle.location.local_frame #NED

print "Attitude: %s" % vehicle.attitude

print "Velocity: %s" % vehicle.velocity

print "GPS: %s" % vehicle.gps_0

print "Groundspeed: %s" % vehicle.groundspeed

print "Airspeed: %s" % vehicle.airspeed

print "Battery: %s" % vehicle.battery

print "EKF OK?: %s" % vehicle.ekf_ok

print "Last Heartbeat: %s" % vehicle.last_heartbeat

print "Rangefinder: %s" % vehicle.rangefinder

print "Rangefinder distance: %s" % vehicle.rangefinder.distance

print "Rangefinder voltage: %s" % vehicle.rangefinder.voltage

77

print "Heading: %s" % vehicle.heading

print "Is Armable?: %s" % vehicle.is_armable

print "System status: %s" % vehicle.system_status.state

print "Mode: %s" % vehicle.mode.name # settable

print "Armed: %s" % vehicle.armed

def arm_and_takeoff(aTargetAltitude):

 """

 Arms vehicle and fly to aTargetAltitude.

 """

 print "Basic pre-arm checks"

 # Don't try to arm until autopilot is ready

 while not vehicle.is_armable:

 print " Waiting for vehicle to initialise..."

 time.sleep(1)

 print "Arming motors"

 # Copter should arm in GUIDED mode

 vehicle.mode = VehicleMode("GUIDED")

 vehicle.armed = True

 # Confirm vehicle armed before attempting to take off

 while not vehicle.armed:

 print " Waiting for arming..."

 time.sleep(1)

 print "Taking off!"

 vehicle.simple_takeoff(aTargetAltitude) # Take off to target

altitude

 # Wait until the vehicle reaches a safe height before processing

the goto (otherwise the command

 # after Vehicle.simple_takeoff will execute immediately).

 while True:

 print " Altitude: ",

vehicle.location.global_relative_frame.alt

 #Break and return from function just below target altitude.

 if

vehicle.location.global_relative_frame.alt>=aTargetAltitude*0.95:

 print "Reached target altitude"

 break

 time.sleep(1)

def countdown(amtTime):

 i = 0

 while i <= amtTime:

78

 print("COUNTDOWN: "+str(amtTime-i))

 time.sleep(1)

 i = i+1

def countdownAlt(amTime):

 o = 0

 while o <= amTime:

 print("COUNTDOWN: "+str(amTime-o))

 print " Altitude: ",

vehicle.location.global_relative_frame.alt

 time.sleep(1)

 o = o+1

countdown(20)

print "Set default/target airspeed to 1"

vehicle.airspeed=1

vehicle.groundspeed =1

arm_and_takeoff(1)

print "Returning to Launch"

vehicle.mode = VehicleMode("LAND")

countdownAlt(30)

#Close vehicle object before exiting script

print "Close vehicle object"

vehicle.close()

testflight2.py
Import DroneKit-Python

from dronekit import connect, VehicleMode

import time

Connect to the Vehicle.

print "Connecting to vehicle on: 'tcp:127.0.0.1:5760'"

vehicle = connect("/dev/ttyACM0", wait_ready=True)

from dronekit import connect, VehicleMode, LocationGlobalRelative

from pymavlink import mavutil # Needed for command message

definitions

import time

vehicle is an instance of the Vehicle class

79

print "Global Location: %s" % vehicle.location.global_frame

print "Global Location (relative altitude): %s" %

vehicle.location.global_relative_frame

print "Local Location: %s" % vehicle.location.local_frame #NED

print "Attitude: %s" % vehicle.attitude

print "Velocity: %s" % vehicle.velocity

print "GPS: %s" % vehicle.gps_0

print "Groundspeed: %s" % vehicle.groundspeed

print "Airspeed: %s" % vehicle.airspeed

print "Battery: %s" % vehicle.battery

print "EKF OK?: %s" % vehicle.ekf_ok

print "Last Heartbeat: %s" % vehicle.last_heartbeat

print "Rangefinder: %s" % vehicle.rangefinder

print "Rangefinder distance: %s" % vehicle.rangefinder.distance

print "Rangefinder voltage: %s" % vehicle.rangefinder.voltage

print "Heading: %s" % vehicle.heading

print "Is Armable?: %s" % vehicle.is_armable

print "System status: %s" % vehicle.system_status.state

print "Mode: %s" % vehicle.mode.name # settable

print "Armed: %s" % vehicle.armed

def arm_and_takeoff(aTargetAltitude):

 """

 Arms vehicle and fly to aTargetAltitude.

 """

 print "Basic pre-arm checks"

 # Don't try to arm until autopilot is ready

 while not vehicle.is_armable:

 print " Waiting for vehicle to initialise..."

 time.sleep(1)

 print "Arming motors"

 # Copter should arm in GUIDED mode

 vehicle.mode = VehicleMode("GUIDED")

 vehicle.armed = True

 # Confirm vehicle armed before attempting to take off

 while not vehicle.armed:

 print " Waiting for arming..."

 time.sleep(1)

 print "Taking off!"

 vehicle.simple_takeoff(aTargetAltitude) # Take off to target

altitude

80

 # Wait until the vehicle reaches a safe height before processing

the goto (otherwise the command

 # after Vehicle.simple_takeoff will execute immediately).

 while True:

 print " Altitude: ",

vehicle.location.global_relative_frame.alt

 #Break and return from function just below target altitude.

 if

vehicle.location.global_relative_frame.alt>=aTargetAltitude*0.95:

 print "Reached target altitude"

 break

 time.sleep(1)

def countdown(amtTime):

 i = 0

 while i <= amtTime:

 print("COUNTDOWN: "+str(amtTime-i))

 time.sleep(1)

 i = i+1

def countdownAlt(amTime):

 o = 0

 while o <= amTime:

 print("COUNTDOWN: "+str(amTime-o))

 print " Altitude: ",

vehicle.location.global_relative_frame.alt

 time.sleep(1)

 o = o+1

def countdownLoc(amTime):

 o = 0

 while o <= amTime:

 print("COUNTDOWN: "+str(amTime-o))

 print " Altitude: ", vehicle.location.global_relative_frame

 time.sleep(1)

 o = o+1

def moveVehicle(velocity_x, velocity_y, velocity_z, duration):

 """

 Move vehicle in direction based on specified velocity vectors.

 """

 msg =

vehicle.message_factory.set_position_target_local_ned_encode(

 0, # time_boot_ms (not used)

 0, 0, # target system, target component

 mavutil.mavlink.MAV_FRAME_LOCAL_NED, # frame

 0b0000111111000111, # type_mask (only speeds enabled)

 0, 0, 0, # x, y, z positions (not used)

81

 velocity_x, velocity_y, velocity_z, # x, y, z velocity in m/s

 0, 0, 0, # x, y, z acceleration (not supported yet, ignored

in GCS_Mavlink)

 0, 0) # yaw, yaw_rate (not supported yet, ignored in

GCS_Mavlink)

 # send command to vehicle on 1 Hz cycle

 for x in range(0,duration):

 vehicle.send_mavlink(msg)

 time.sleep(1)

countdown(20)

print "Set default/target airspeed to 1"

vehicle.airspeed=1

vehicle.groundspeed =1

arm_and_takeoff(1)

#move the vehicle north for 5 seconds at a speed of 1 m/s

moveVehicle(1,0,0,5)

countdownLoc(5)

print "Returning to Launch"

vehicle.mode = VehicleMode("LAND")

countdownAlt(30)

#Close vehicle object before exiting script

print "Close vehicle object"

vehicle.close()

testflight3.py
from dronekit import connect, VehicleMode, LocationGlobalRelative

from pymavlink import mavutil # Needed for command message

definitions

import time

from picamera.array import PiRGBArray

from picamera import PiCamera

import cv2

import numpy as np

82

Connect to the Vehicle

print 'Connecting to vehicle;'

vehicle = connect("/dev/ttyACM0", wait_ready=True)

vehicle is an instance of the Vehicle class

print "Global Location: %s" % vehicle.location.global_frame

print "Global Location (relative altitude): %s" %

vehicle.location.global_relative_frame

print "Local Location: %s" % vehicle.location.local_frame #NED

print "Attitude: %s" % vehicle.attitude

print "Velocity: %s" % vehicle.velocity

print "GPS: %s" % vehicle.gps_0

print "Groundspeed: %s" % vehicle.groundspeed

print "Airspeed: %s" % vehicle.airspeed

print "Battery: %s" % vehicle.battery

print "EKF OK?: %s" % vehicle.ekf_ok

print "Last Heartbeat: %s" % vehicle.last_heartbeat

print "Rangefinder: %s" % vehicle.rangefinder

print "Rangefinder distance: %s" % vehicle.rangefinder.distance

print "Rangefinder voltage: %s" % vehicle.rangefinder.voltage

print "Heading: %s" % vehicle.heading

print "Is Armable?: %s" % vehicle.is_armable

print "System status: %s" % vehicle.system_status.state

print "Mode: %s" % vehicle.mode.name # settable

print "Armed: %s" % vehicle.armed

camera = PiCamera()

rawCapture = PiRGBArray(camera)

hog = cv2.HOGDescriptor()

hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())

def arm_and_takeoff(aTargetAltitude):

 """

 Arms vehicle and fly to aTargetAltitude.

 """

 print "Basic pre-arm checks"

 # Don't try to arm until autopilot is ready

 while not vehicle.is_armable:

 print " Waiting for vehicle to initialise..."

 time.sleep(1)

 print "Arming motors"

 # Copter should arm in GUIDED mode

 vehicle.mode = VehicleMode("GUIDED")

 vehicle.armed = True

83

 # Confirm vehicle armed before attempting to take off

 while not vehicle.armed:

 print " Waiting for arming..."

 time.sleep(1)

 print "Taking off!"

 vehicle.simple_takeoff(aTargetAltitude) # Take off to target

altitude

 # Wait until the vehicle reaches a safe height before processing

the goto (otherwise the command

 # after Vehicle.simple_takeoff will execute immediately).

 while True:

 print " Altitude: ",

vehicle.location.global_relative_frame.alt

 #Break and return from function just below target altitude.

 if

vehicle.location.global_relative_frame.alt>=aTargetAltitude*0.95:

 print "Reached target altitude"

 break

 time.sleep(1)

def countdown(amtTime):

 i = 0

 while i <= amtTime:

 print("COUNTDOWN: "+str(amtTime-i))

 time.sleep(1)

 i = i+1

def countdownAlt(amTime):

 o = 0

 while o <= amTime:

 print("COUNTDOWN: "+str(amTime-o))

 print " Altitude: ",

vehicle.location.global_relative_frame.alt

 time.sleep(1)

 o = o+1

def countdownLoc(amTime):

 o = 0

 while o <= amTime:

 print("COUNTDOWN: "+str(amTime-o))

 print " Altitude: ", vehicle.location.global_relative_frame

 time.sleep(1)

 o = o+1

def moveVehicle(velocity_x, velocity_y, velocity_z, duration):

 """

 Move vehicle in direction based on specified velocity vectors.

84

 """

 msg =

vehicle.message_factory.set_position_target_local_ned_encode(

 0, # time_boot_ms (not used)

 0, 0, # target system, target component

 mavutil.mavlink.MAV_FRAME_LOCAL_NED, # frame

 0b0000111111000111, # type_mask (only speeds enabled)

 0, 0, 0, # x, y, z positions (not used)

 velocity_x, velocity_y, velocity_z, # x, y, z velocity in m/s

 0, 0, 0, # x, y, z acceleration (not supported yet, ignored

in GCS_Mavlink)

 0, 0) # yaw, yaw_rate (not supported yet, ignored in

GCS_Mavlink)

 # send command to vehicle on 1 Hz cycle

 for x in range(0,duration):

 vehicle.send_mavlink(msg)

 time.sleep(1)

def takePicture():

 camera.capture(rawCapture, format="bgr")

 image = rawCapture.array

 return image

gets the number of people in the image

def readImage(image):

 (rects, weights) = hog.detectMultiScale(image, winStride=(4, 4),

padding=(8, 8), scale=1.05)

 count=0

 for (xA, yA, xB, yB) in rects:

 count=count+1

 return count

def findNumPeople():

 img =takePicture();

 people= readImage(img)

 return people

countdown(20)

print "Set default/target airspeed to 1"

vehicle.airspeed=1

vehicle.groundspeed =1

arm_and_takeoff(1)

85

moveVehicle(0.5,1,0,2)

countdownLoc(2);

count = findNumPeople()

countdown(1)

print(count)

print "Returning to Launch"

vehicle.mode = VehicleMode("LAND")

countdownAlt(30)

#Close vehicle object before exiting script

print "Close vehicle object"

vehicle.close()

testflight4.py
from dronekit import connect, VehicleMode,

LocationGlobalRelative,LocationGlobal

from pymavlink import mavutil # Needed for command message

definitions

import time

from picamera.array import PiRGBArray

from picamera import PiCamera

import cv2

import numpy as np

import math

Connect to the Vehicle

print 'Connecting to vehicle;'

vehicle = connect("/dev/ttyACM0", wait_ready=True)

vehicle is an instance of the Vehicle class

print "Global Location: %s" % vehicle.location.global_frame

86

print "Global Location (relative altitude): %s" %

vehicle.location.global_relative_frame

print "Local Location: %s" % vehicle.location.local_frame #NED

print "Attitude: %s" % vehicle.attitude

print "Velocity: %s" % vehicle.velocity

print "GPS: %s" % vehicle.gps_0

print "Groundspeed: %s" % vehicle.groundspeed

print "Airspeed: %s" % vehicle.airspeed

print "Battery: %s" % vehicle.battery

print "EKF OK?: %s" % vehicle.ekf_ok

print "Last Heartbeat: %s" % vehicle.last_heartbeat

print "Rangefinder: %s" % vehicle.rangefinder

print "Rangefinder distance: %s" % vehicle.rangefinder.distance

print "Rangefinder voltage: %s" % vehicle.rangefinder.voltage

print "Heading: %s" % vehicle.heading

print "Is Armable?: %s" % vehicle.is_armable

print "System status: %s" % vehicle.system_status.state

print "Mode: %s" % vehicle.mode.name # settable

print "Armed: %s" % vehicle.armed

camera = PiCamera()

rawCapture = PiRGBArray(camera)

hog = cv2.HOGDescriptor()

hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())

def arm_and_takeoff(aTargetAltitude):

 """

 Arms vehicle and fly to aTargetAltitude.

 """

 print "Basic pre-arm checks"

 # Don't try to arm until autopilot is ready

 while not vehicle.is_armable:

 print " Waiting for vehicle to initialise..."

 time.sleep(1)

 print "Arming motors"

 # Copter should arm in GUIDED mode

 vehicle.mode = VehicleMode("GUIDED")

 vehicle.armed = True

 # Confirm vehicle armed before attempting to take off

 while not vehicle.armed:

 print " Waiting for arming..."

 time.sleep(1)

 print "Taking off!"

87

 vehicle.simple_takeoff(aTargetAltitude) # Take off to target

altitude

 # Wait until the vehicle reaches a safe height before processing

the goto (otherwise the command

 # after Vehicle.simple_takeoff will execute immediately).

 while True:

 print " Altitude: ",

vehicle.location.global_relative_frame.alt

 #Break and return from function just below target altitude.

 if

vehicle.location.global_relative_frame.alt>=aTargetAltitude*0.95:

 print "Reached target altitude"

 break

 time.sleep(1)

def countdown(amtTime):

 i = 0

 while i <= amtTime:

 print("COUNTDOWN: "+str(amtTime-i))

 time.sleep(1)

 i = i+1

def countdownAlt(amTime):

 o = 0

 while o <= amTime:

 print("COUNTDOWN: "+str(amTime-o))

 print " Altitude: ",

vehicle.location.global_relative_frame.alt

 time.sleep(1)

 o = o+1

def moveVehicle(velocity_x, velocity_y, velocity_z, duration):

 """

 Move vehicle in direction based on specified velocity vectors.

 """

 msg =

vehicle.message_factory.set_position_target_local_ned_encode(

 0, # time_boot_ms (not used)

 0, 0, # target system, target component

 mavutil.mavlink.MAV_FRAME_LOCAL_NED, # frame

 0b0000111111000111, # type_mask (only speeds enabled)

 0, 0, 0, # x, y, z positions (not used)

 velocity_x, velocity_y, velocity_z, # x, y, z velocity in m/s

 0, 0, 0, # x, y, z acceleration (not supported yet, ignored

in GCS_Mavlink)

 0, 0) # yaw, yaw_rate (not supported yet, ignored in

GCS_Mavlink)

88

 # send command to vehicle on 1 Hz cycle

 for x in range(0,duration):

 vehicle.send_mavlink(msg)

 time.sleep(1)

def goToLocation(targetLocation, gotoFunction=vehicle.simple_goto):

 currentLocation=vehicle.location.global_relative_frame

 targetDistance=get_distance_metres(currentLocation,

targetLocation)

 gotoFunction(targetLocation)

 while vehicle.mode.name=="GUIDED": #Stop action if we are no

longer in guided mode.

remainingDistance=get_distance_metres(vehicle.location.global_frame,

targetLocation)

 print "Distance to target: ", remainingDistance

 if remainingDistance<=targetDistance*0.01: #Just below

target, in case of undershoot.

 print "Reached target"

 break;

 time.sleep(2)

def get_distance_metres(aLocation1, aLocation2):

 """

 Returns the ground distance in metres between two LocationGlobal

objects.

 This method is an approximation, and will not be accurate over

large distances and close to the

 earth's poles. It comes from the ArduPilot test code:

https://github.com/diydrones/ardupilot/blob/master/Tools/autotest/com

mon.py

 """

 dlat = aLocation2.lat - aLocation1.lat

 dlong = aLocation2.lon - aLocation1.lon

 return math.sqrt((dlat*dlat) + (dlong*dlong)) * 1.113195e5

def takePicture():

 camera.capture(rawCapture, format="bgr")

 image = rawCapture.array

 return image

gets the number of people in the image

def readImage(image):

 (rects, weights) = hog.detectMultiScale(image, winStride=(4, 4),

89

padding=(8, 8), scale=1.05)

 count=0

 for (xA, yA, xB, yB) in rects:

 count=count+1

 return count

def findNumPeople():

 img =takePicture();

 people= readImage(img)

 return people

countdown(20)

print "Set default/target airspeed to 1"

vehicle.airspeed=1

vehicle.groundspeed =1

arm_and_takeoff(1)

moveVehicle(1,0,0,5)

count = findNumPeople()

print(count)

lat = 0;

lon = 0;

alt = 1;

a_location = LocationGlobal(lat, lon, alt)

if(count>1):

 goToLocation(a_location)

print "Returning to Launch"

vehicle.mode = VehicleMode("LAND")

countdownAlt(30)

#Close vehicle object before exiting script

print "Close vehicle object"

vehicle.close()

