Hawkeye: Unmanned Search
and Rescue Missions through
Intelligent Drones Guided by
Computer Vision and Dynamic

Pathfinding

Adiyan Kaul
Sohan Vichare

Table of Contents

1) Inspiration, Project Proposal, and Plan Pg. 3 -5
2) Drone Specifications Pg. 6 -7
3) Person Recognition Code Pg. 8 - 14
a. Overview
b. Code Samples
c. Debrief
4) Dynamic Pathfinding Code Pg. 15 - 18
a. Overview
b. Code Samples
c. Debrief
5) Drone Flight Code Pg. 19 - 21
a. Overview
b. Code Samples
c. Debrief
7) Project Summary Pg. 22
a. Project Summary and Takeaways
8) Photos Pg. 23-38
9) Full Code Pg. 39-87

Inspiration, Proposal, and Plan
Inspiration

The use of drones in search and rescue missions holds much promise. As of now, various
government agencies are using drones to assist in search and rescue missions. However, we
noticed one thing about drones being used in search and rescue missions - they are all controlled
by people. We strongly believe that autonomously controlled drones, that is, drones that can
control themselves, can make search and rescue missions that currently require massive amounts

of manpower due to their sheer size much more efficient.

Brief Project Proposal

Build and program a drone that can accomplish the following:
1. Take off and fly itself around a user-defined area of land
2. Detect people
3. Bring these people to user-defined safe points
a. Detect and avoid obstacles (for use in rough, mountainous, environments)
4. Collect relevant data
5. Complete the above as efficiently as possible

The complete Engineering Project Detailed Research Plan is attached at the end of this journal.

Plan

Materials

1. 3DR Y6 2014 DIY Drone Kit (Drone body)

3DR GPS Module (Drone GPS)

Pixhawk 32-Bit with ArduPilot (Drone CPU)

Raspberry Pi 2 B+ (Onboard Drone Companion Computer)
Raspberry Pi Camera (Camera for Person and Object Recognition)
3DR Y6 Lithium-Polymer 4S 5200mAh Battery (Drone battery)
Anker Astro Battery (Raspberry Pi Onboard Battery)

e A o B

MicroUSB Cable (Connect Raspberry Pi to Pixhawk)

Build Plan Diagram

Pixhawk deals with low-level drone
stabilization and flight code, and translates
RPi commands into drone movements

Pixhawk 32-Bit CPU

The Pixhawk 32-Bit CPU will take
input from the GPS module and sensors Pixhawk CPU
on the drone to take care of lower level
processes, such as drone stabilization,
drone initialization, and power
distribution.

1 AN Wk,
and RPi

RPi sends flight commands
to Pixhawk, Pixhawk makes
drone data open to RPi

Drone and RPi

Raspberry Pi Batteries
The Raspberry Pi will be the drone’s
onboard computer. It will run all of the
computer vision algorithms, pathfinding
algorithms, and anything else that is
computation-intensive. It will send
commands to the Pixhawk to control the
drone.

Input to
Raspberry Pi

Flight Plan Diagram

Drone Flight Plan

Drone will:
1. Divide X by Y grid into
5 by 5 meter “chunks”

2. Analyze each “chunk”
for people using
computer vision

3. If people are found, it
will bring these people
back to designated safe
locations, and avoid
detected obstacles
while doing this

4, Continue looping
through chunks

detected
People to be obstacles

Designated Safe Points rescued

Drone Specifications

3DR Y6 Body Specs

Motors: 6

Weight (without battery): 1200 grams
Weight (with batteries): 2100 grams
Wingspan: 40 centimeters

Propeller Length: 23 centimeters

Height: 29 centimeters

S S V)

. / L SN S

Pixhawk Drone CPU Specs

Processor: 168 MHz / 252 MIPS Cortex-M4F
Height: 1.8 centimeters

Width: 7.8 centimeters

Raspberry P1 Onboard Computer Specs

Processor: A 900MHz quad-core ARM Cortex-A7 CPU
RAM: 1GB
Operating System: Debian Linux

Dimensions: 104mm x 75mm x 23mm

Person Recognition Code

Overview

1. Wrote code with Opencv

2. Used Haar Cascade Classifiers to determine what was a person

3. Found the classifier granted by OpenCV far too inaccurate so we trained the classifier to
make it far more accurate

4. Optimized it to work real time and efficiently

B.) Code Samples

1. Code for frontal face detection

code explanation

l.import numpy as np 1. These are the necessary imports
import cv2 when working with face detection.

Cv2 is the opencv library and numpy

is a math library

2. face cascade = 2. This creates the classifiers which

cv2.CascadeClassifier(‘'haarcascade frontalface default.xml') | deal with finding people. The face

eye cascade = cv2.CascadeClassifier('haarcascade eye.xml') | cascade finds faces and the eye

cascade finds eyes

3.img = cv2.imread('insert image file name here’') 3. This sends the image to opencv and

4. rects = face cascade.detectMultiScale(img,
scaleFactor=1.3, minNeighbors=4, minSize=(30,

30),flags=cv2.CASCADE SCALE IMAGE)

5. for (x, y, w, h) in rects:
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
roi_color = img[y:y+h, x:x+w]|
eyes = eye_cascade.detectMultiScale(roi_color)
for (ex,ey,ew,eh) in eyes:
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),

(0,255,0),2)

6. cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

converts it into a matrix with the rgb

values .

4. This finds the actual faces with the
help of the parameters. The img is the
matrix which was declared in step 3,
the scale factor specifies how much
the image size is reduced at each
image scale, the minimum neighbors
specifies how many neighbors each
candidate should have, and the min
size is the minimum possible size of

the object.

5. This draws the actual rectangles
around the face and the eyes. The
cv2.rectangle is the opencv function
for drawing a rectangle. The roi_color
is a subsection of the picture and the

eyes are found in that section.

6. This finally shows the resulting
image after all the recognition and
escapes when the escape key is

pressed.

2. Pedestrian Detection

10

Code

Explanation

1.import numpy as np

import cv2

import imutils

from imutils.object detection import
non_max_suppression

2. hog = ¢v2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor getDef
aultPeopleDetector())

3. image = cv2.imread('insert file name here’')
orig = image.copy()

4. (rects, weights) = hog.detectMultiScale(image,
winStride=(4, 4),
padding=(8, 8), scale=1.05)

5. for (x, y, w, h) in rects:
cv2.rectangle(orig, (X, y), (x + w, y + h),
(0,0, 255), 2)

6. rects = np.array([[X, y, X + w, y + h] for (x, y,
w, h) in rects])

pick =non_max_suppression(rects, probs=None,
overlapThresh=0.65)

7.for (xA, yA, xB, yB) in pick:
cv2.rectangle(image, (xA, yA), (xB, yB),
(0, 255, 0), 2)

1. These are all the imports necessary for the code
to work.

2. This creates a hog descriptor or a histogram of
oriented gradients which is a feature descriptor
used in computer vision for the purpose of object
detection

3. This sends the image to opencv and converts it
into a matrix with the rgb values .

4. This detects the people in the image using the
parameters. Image refers to the step 3 image, win
Stride dictates the “step size” in both the x and y
location of the sliding window, the padding is a
tuple which indicates the number of pixels in both
the x and y direction in which the sliding window
ROl is “padded” prior to HOG feature
extraction,and the scale controls the factor in
which our image is resized at each layter of the
image pyramid, ultimately influencing the number
of levels in the image pyramid.

5. This draws the rectangles around all the people
the previous step.

6. This applies non-maxima suppression to the
bounding boxes using a fairly large overlap
threshold to try to maintain overlapping boxes that
are still people. This ensures that the people
detection is accurate.

7. This draws the proper rectangles around the
people based on the last step.

11

8. cv2.imshow("Before NMS", orig)

cv2.imshow("After NMS", image)
cv2.waitKey(0)

8. This displays two images, one with all the
rectangles and one with the accurate rectangles.

Debrief

1. Here is an image that we experimented with:

{
¢ ¢
.

2. Here is the result:

3. As can be seen the code was able to find my face and drew a rectangle around my face

and my eyes.This took place in around 3 seconds showing its precision and accuracy

12

4. Here is an example of a drone's camera view.

5. The following two pictures shows the output of the people detection from the Hog
classifier.

a. The prelim image:

Before NMS

13

14

b. The accurate image:

This highlights the accuracy of the Hog Descriptor as it was able to recognize most of the
people in the image with remarkable accuracy. All of the rectangles the program drew
were actual people and this is how we are finding the people with the drone. Although the
code was not able to recognize every single person in the picture, it was still very

accurate as every rectangle it drew was a real person.

15

Pathfinding Code

Overview

Use
The pathfinding code will be used to the drone lead people back to user-defined safe points
around things that they cannot get across. Computer Vision code (see above) will identify and
input the locations of points that people will not be able to cross.
Requirements
1. Dynamic Path Replanning
a. the drone has to navigate itself in an environment which it does not fully know -
the path planning algorithm must be able to take input and dynamically replan a
path with a new obstacle on the fly
2. Latitude and Longitude
a. the path planning algorithm must be able to take in inputs of latitude and
longitude coordinates for safe points and obstacles
3. Optimized
a. the path planning algorithm must be optimized (NOT brute force) as it will be run
alongside computer vision algorithms on the Raspberry Pi
Plan
Based on our requirements, we decided to base our algorithm off the D* Lite Path
Planning Algorithm (based on this paper: http://idm-lab.org/bib/abstracts/papers/aaai02b.pdf,
printout attached at back of report). This algorithm, developed by Professor Sven Koenig, not

only is not processing-intensive but also allows for dynamic path replanning.

Comparison to A* and Djikstra’s Algorithm

A* and Djikstra’s algorithm are two very popular path-planning algorithms. However,

both fall short when it comes to replanning a path upon addition or subtraction of a new obstacle

16

in the environment. D* Lite, on the other hand, has the power to dynamically change the costs of
surrounding nodes, so essentially the path can be replanned around the newly added obstacle

while most of the original path remains intact.

Code Walkthrough

**Due to space constraints, the actual D* Lite code is not included here. To view it, go to page

49+

D* Lite Algorithm Pseudocode (Taken From D* Lite, by Sven Koenig and Maxim Likhachev)

D* Lite Pathfinding Algorithm Simple Explanation
D* Lite begins (Initialize() method above) by finding the ideal shortest path between the “start”

and the “end.” It divides the world into a grid, and each point is a node. D* Lite uses a novel

method, taken from the Lifelong Planning A* algorithm to cheaply adapt to obstacles as they

[IP=l]

block the computed path. Each node on the specified path calculates its own “g” value, which is

[Pt

the cost of getting to that node from the start. However, the algorithm also computes another “g

2 (P2

value based on the node’s neighboring node’s “g” values, which is called “rhs.” The minimum

b [Pt

value is stored in “rhs” and later used to update the node’s “g” value. During this estimating

€C 9

process, neighboring nodes take into account the new obstacles so that “g” is updated with an

“rhs” that has taken into account the new obstacles or free spaces.

procedure CalculateKey(s)
{01} return [min(g(s), rhs(s)) + h(s, 850a1); min(g(s), rhs(s))];

procedure Initialize()

{02} U = 0;

{03} foralls € S rhs(s) = g(s) = oc;
{04} rhs(sstart) = 0;

{05} U.Insert(8start , CalculateKey(8start));

procedure UpdateVertex(w)

{06} if (w # sstart) rhs(u) = min €Pred(u) (g (s') -+ c(s', w));
{07} if (v € U) URemove(u);
{08} if (g(w) # rhs(w)) Ulnsert(w, CalculateKey(u));

procedure ComputeShortestPath()

{09} while (U.TopKey () <CalculmeKey(-9,q'oal)ORrhs(8g0al) # 9(8goal))
{10} w = U.Pop();

{11} if(g(u) > rhs(u))

{12} g(u) = rhs(u);

{13} forall s € Succ(u) UpdateVertex(s);

{14} else

{15} g(u) = oo;

{16} foralls € Succ(u) U {u} UpdateVertex(s);

procedure Main()

{17} Initialize();

{18} forever

{19} ComputeShortestPath();

{20} Wait for changes in edge costs;

{21} forall directed edges (u, v) with changed edge costs
{22} Update the edge cost c(u, v);

{23} UpdateVertex (v);

Debrief

D* Lite Results

17

@loo+«E s

As can be seen, the D* Lite pathfinding code successfully found the shortest path between a

randomly generated field of obstacles. Here are a few more outputs:

18

19

20

Drone Flight Code

Overview

1. Wrote Python code to get the drone to fly
2. Used dronekit python to do so (http://dronekit.io)

B.) Code Samples

Code Explanation

1. from dronekit import connect, VehicleMode, 1. These are the necessary imports for the code to

LocationGlobalRelative work.

import time
2. This declares the vehicle variable and sets it to

2. print 'Connecting to vehicle;' i)
the drone using the connection.

vehicle = connect("/dev/tty ACMO",
wait_ready=True)

3. defarm_and_takeoff(aTargetAltitude): 3. This defines a function arm_and_takeoff which
LU does a lot of different things. First it confirms the

vehicle is armed before it can take off. Then

using the vehicle.simple takeoff() function it

" starts the propeller. Once it has reached that height

Arms vehicle and fly to aTargetAltitude.

21

print "Basic pre-arm checks"
Don't try to arm until autopilot is ready
while not vehicle.is_armable:

print " Waiting for vehicle to initialise..."

time.sleep(1)

print "Arming motors"
Copter should arm in GUIDED mode
vehicle.mode = VehicleMode("GUIDED")

vehicle.armed = True

Confirm vehicle armed before attempting to
take off
while not vehicle.armed:
print " Waiting for arming..."

time.sleep(1)

print "Taking off!"
vehicle.simple takeoff(aTargetAltitude) # Take

off to target altitude

Wait until the vehicle reaches a safe height
before processing the goto (otherwise the
command

after Vehicle.simple_takeoff will execute
immediately).

while True:

print " Altitude: ",
vehicle.location.global _relative frame.alt

#Break and return from function just below

the function will break.

22

target altitude.
if
vehicle.location.global_relative frame.alt>=aTarg
etAltitude*0.95:
print "Reached target altitude"
break
time.sleep(1)

4. arm_and_takeoff(1)

print "Set default/target airspeed to 3"

vehicle.airspeed=3

print "Returning to Launch"
vehiclemode = VehicleMode("LAND")
#Close vehicle object before exiting script
print "Close vehicle object"

vehicle.close()

4. This code calls the arm_and_takeoff function
declared above which flies the drone up one meter
because of the passed in 1 parameter. After the
drone has reached the height of one meter, the
mode of the vehicle is changed to RTL. This
signifies return to launch which means the drone
flies back to the location it started from. The drone
is then disarmed and turned off.

23

Project Summary

Person Recognition:

This was also extremely successful and was able to detect people at a remarkable accuracy rate.
We fed the program lots and lots of pictures and found the accuracy to be right about 80%. When
we were testing we realized that the program often didn’t find people who were laying down. To
solve this problem we trained our own hog classifier. This was done in three steps. Step 1) We
prepared some training images of the objects you want to detect (positive samples). Also we will
prepared some images with no objects of interest (negative samples).Step 2) We then detected
HOG features of the training sample and use this features to train an SVM classifier (also
provided in OpenCV).Step 3) Use the coefficients of the trained SVM classifier in
HOGDescriptor.setSVMDetector() method. This was able to get a lot more people but it still
wasn’t as accurate as we would like it to be. However, the person recognition was accurate

enough for us to be able to get people with accuracy and be able to save them.

Pathfinding:

24

We were successfully able to implement the D* Lite pathfinding algorithm to dynamically find
the shortest path between the drone and the safe “goal” location while avoiding obstacles to the
person. Due to its grid based processing, the algorithm worked perfectly after we modified its

“world” to be a grid of latitude and longitudinal points.

Drone Flight:

The drone flight code worked successfully. The Raspberry Pi sent commands to the Pixhawk,
which then interfaced with the drone’s motors to control the drone. We had to put set times
behind each command we sent to the Pixhawk to allow them to run and/or continuously monitor
the location of the drone in the world frame to make sure that one command was not sent while
another was not finished running. The drone code we wrote made it easy to interface with the

pixhawk, and is reusable, so that we can utilize it in the future to easily control a drone.

Photos

25

26

28

29

30

31

32

i

l

!

4

33

34

35

36

.
LI,

= Cel)

Coy

lance So,
® e ey
£ coilg Sas

39

40

41

Search and Rescue Code

import numpy as np

import math

import cv2

from picamera.array import PiRGBArray

from picamera import PiCamera

from dronekit import connect, VehicleMode, LocationGlobalRelative
from pymavlink import mavutil # Needed for command message
definitions

import time

from dronekit sitl import SITL

from imutils.object detection import non max suppression

#defines drone variable

vehicle = connect ("/dev/ttyACMO", wait ready=True);

fdefines variable t

face cascade =
cv2.CascadeClassifier ('haarcascade frontalface default.xml')

initialize the camera and grab a reference to the raw camera

capture
camera = PiCamera ()
rawCapture = PiRGBArray (camera)

hog = cv2.HOGDescriptor ()
hog.setSVMDetector (cv2.HOGDescriptor getDefaultPeopleDetector())

#define location class that stores latitude and longitude
class Location:
"Basic Location class, used to store latitude and longitude"

def init (self, latitude, longitude):
self.latitude = latitude
self.longitude = longitude

42

#define Safelocation class, which stores location data, which people
are at each Safe Location
class Safelocation:

"Safe Location class, used to store data for a safe location. Has
two attributes, one is location (a location object which stores the
location), and the second is peopleArrivedArray, which is an array
that stores the people who have reached this location.”

def init (self, location):
self.location = location
#an array of Person objects, used to store what people are
already at the safelocation
self.peopleArrivedArray = [];

#define helper method to print arrays with locations so that they are
easy to see
def printLocationArray (locationArray) :
for item in locationArray:
print item.latitude
print item.longitude

print " "

#define helper method to get an array of the locations object from an
array of a person, safelocation, or any other object that has
location as a property
def getLocationsArray(safelocsArray) :

returnArray = []

for item in safelocsArray:

returnArray.append(item.location);
return returnArray;

#distance formula function, finds distance between two location
objects, accounting for the earth's spherical shape (assumes that
earth is a sphere)

def distanceBetweenlocations (locationl, location?2?):

Convert latitude and longitude to spherical coordinates in
radians.
degreesToRadians = math.pi/180.0

phi = 90 - latitude
phil = (90.0 - locationl.latitude) *degreesToRadians
phi2 = (90.0 - location2.latitude) *degreesToRadians

43

theta = longitude
thetal
theta?

locationl.longitude*degreesToRadians

location2.longitude*degreesToRadians

Compute spherical distance from spherical coordinates.

For two locations in spherical coordinates

(1, theta, phi) and (1, theta', phi')

cosine(arc length) =

sin phi sin phi' cos(theta-theta') + cos phi cos phi'

distance = rho * arc length

cos = (math.sin(phil)*math.sin(phi2)*math.cos (thetal - theta2) +
math.cos (phil) *math.cos (phi2))

arc = math.acos(cos)

multiply and return arc by the right distance unit, miles or
kilometers

unit = 1;
return arc * unit;
def closestSafePoint (dronelLocation, safePointLocationArray):

#define array that will be returned
closestPointIndexArray = [];

usedIndexArray = [];
closestDhist = 1000;
closestIndex = 0O;

for index, item in enumerate (safePointLocationArray) :
for ind, itm in enumerate(safePointLocationArray) :
if ind not in usedIndexArray:
dist = distanceBetweenLocations (itm.location,
droneLocation) ;
if dist <= closestDist:
closestDist = dist;
closestIndex = ind;

if closestIndex not in usedIndexArray:
usedIndexArray.append (closestIndex) ;
closestPointIndexArray.append(closestIndex) ;
closestDist = 1000;

44

return closestPointIndexArray.sort();

ftakes a "picture" of what the picamera is seeing by saving the array
def takePicture() :

camera.capture (rawCapture, format="bgr")

image = rawCapture.array

return image

gets the number of people in the image
def readImage (image) :

(rects, weights) = hog.detectMultiScale (image, winStride=(4, 4),
padding=(8, 8), scale=1.05)
rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in
rects])
pick = non max suppression(rects, probs=None, overlapThresh=0.65)
count=0

for (xA, yA, xB, yB) in pick:
count=count+1

return count

def findNumPeople():
img =takePicture();
people= readImage (img)
return people

''"'dx = R*cos (theta)

500 * cos (135 deq)

= -353.55 meters

dy = R*sin(theta)
= 500 * sin (135 deq)
= +353.55 meters

delta longitude = dx/(111320*cos (latitude))
= -353.55/(111320*cos (41.88592 deq))
-.004266 deg (approx -15.36 arcsec)

delta latitude

dy/110540
353.55/110540
.003198 deg (approx 11.51 arcsec)

Final longitude = start longitude + delta longitude

45

-87.62788 - .004266
-87.632146

Final latitude start latitude + delta latitude
41.88592 + .003198

= 41.889118

def get distance metres(aLocationl, aLocation2):

mmon

Returns the ground distance in metres between two LocationGlobal
objects.

This method is an approximation, and will not be accurate over
large distances and close to the

earth's poles. It comes from the ArduPilot test code:

https://github.com/diydrones/ardupilot/blob/master/Tools/autotest/com

mon.py
dlat = alocation2.lat - alocationl.lat
dlong = alLocation2.lon - alLocationl.lon

return math.sgrt((dlat*dlat) + (dlong*dlong)) * 1.113195e5

#initializes drone
#connection string is the port at which the rpi connects to drone
#isSimulator is a boolean value for whether this is being used on the
actual drone or a simulator
def initializeDrone (connectionString, isSimulator):
if isSimulator:
sitl = SITL()
sitl.download('copter', '3.3', verbose=True)
sitl args = ['-I0', '--model', 'quad',
'--home=-35.363261,149.165230,584,353"]
sitl.launch(sitl args, await ready=True, restart=True)
print "Connecting to vehicle on: 'tcp:127.0.0.1:5760"'"
vehicle = connect('tcp:127.0.0.1:5760"', wait ready=True)
print information about wvehicle
print "Global Location: %s" % vehicle.location.global frame
print "Global Location (relative altitude): %$s" %
vehicle.location.global relative frame

#NED

vehicle.

print "Local Location:

print "Attitude: %s"

[o)

print "Velocity: %s"
print "GPS: %s" % wvehi
print "Groundspeed: $s
print "Airspeed: %$s" %
print "Battery: $s" %
print "EKF OK?: %s" %
print "Last Heartbeat:
print "Rangefinder: $s
print "Rangefinder dis
rangefinder.distance

print "Rangefinder vol

o)

print "Heading: %s"

%
%

print "Is Armable?: %s

print "System status:

else:

vehicle.

#NED

vehicle.

46

o)

%s" % vehicle.location.local frame

" % vehicle.groundspeed
vehicle.airspeed
vehicle.battery
vehicle.ekf ok
%s" % vehicle.last heartbeat
" % vehicle.rangefinder

o)

tance: %s" %
tage: %$s" % vehicle.rangefinder.voltage
vehicle.heading

" % vehicle.is armable

o)

%s" % vehicle.system status.state

print "Mode: %s" % vehicle.mode.name # settable
print "Armed: $s" % vehicle.armed

Connect to the Vehicle

print 'Connecting to vehicle;'

vehicle = connect (connectionString, wait ready=True)

print information about wvehicle

o)

print "Global Location: %s" % vehicle.location.global frame
print "Global Location (relative altitude): %s"

location.global relative frame

o

print "Local Location: %$s" % vehicle.location.local frame

print "Attitude: %s" vehicle.attitude

Q.

print "Velocity: %s"

3
o)
°

vehicle.velocity

print "GPS: %s" % vehicle.gps O
print "Groundspeed: %$s" % vehicle.groundspeed

print "Airspeed: %s" % vehicle.airspeed
print "Battery: %s" % vehicle.battery

print "EKF OK?: %s" vehicle.ekf ok

o)

print "Last Heartbeat: %s" % vehicle.last heartbeat

[o)

print "Rangefinder: %s" % vehicle.rangefinder

Q

print "Rangefinder distance: %s" %
rangefinder.distance

o

print "Rangefinder voltage: %s" $ vehicle.rangefinder.voltage

o

print "Heading: %s" vehicle.heading

s" % vehicle.is armable

o
o)
°

print "Is Armable?:

47

print "System status: %s" % vehicle.system status.state
print "Mode: %s" % vehicle.mode.name # settable
print "Armed: $s" % vehicle.armed

#flies a vehicle to a target altitude
def arm and takeoff (aTargetAltitude):
#Arms vehicle and fly to aTargetAltitude.

print "Basic pre-arm checks"
Don't try to arm until autopilot is ready
while not vehicle.is armable:
print " Waiting for vehicle to initialise..."
time.sleep (1)

print "Arming motors"

Copter should arm in GUIDED mode
vehicle.mode = VehicleMode ("GUIDED")
vehicle.armed = True

Confirm vehicle armed before attempting to take off
while not vehicle.armed:

print " Waiting for arming..."

time.sleep (1)

print "Taking off!"
vehicle.simple takeoff (aTargetAltitude)
Wait until the vehicle reaches a safe height before processing
the goto (otherwise the command
after Vehicle.simple takeoff will execute immediately).
while True:
print " Altitude: ",
vehicle.location.global relative frame.alt
#Break and return from function just below target altitude.
if
vehicle.location.global relative frame.alt>=aTargetAltitude*0.95:
print "Reached target altitude"
break
time.sleep (1)

#stops program and counts down for a certain number of seconds
def countdown (amtTime) :
i=20

while 1 <= amtTime:

print ("COUNTDOWN: "+str (amtTime-1i))
time.sleep (1)
i = i+1

48

#stops program and countrs down for a certain number of seconds while

displaying the altitude
def countdownAlt (amTime) :
o =20
while o <= amTime:
print ("COUNTDOWN: "+str (amTime-o0))
print " Altitude: ",
vehicle.location.global relative frame.alt
time.sleep (1)
o = o+l

#initializes and takes off drone
#alt: alitutude in meters
#countdownSeconds = number of seconds till takeoff
#isSim = true if we are using a simulator
#connectString = port at which the rpi is connected to drone
"/dev/tty/ACMO" for usb
def takeOff (alt, countdownSeconds, isSim, connectString):
initializeDrone ("/dev/tty/ACMO", 1sSim)
countdown (countdownSeconds)
vehicle.airspeed=3
arm_and takeoff (alt)

def moveVehicle (velocity x, velocity y, velocity z, duration):

muan

Move vehicle in direction based on specified velocity vectors.

muan

msg =

vehicle.message factory.set position target local ned encode (
0, # time boot ms (not used)
o, 0O, # target system, target component

mavutil.mavlink.MAV FRAME LOCAL NED, # frame
0b0000111111000111, # type mask (only speeds enabled)
0, 0, 0, # x, y, z positions (not used)

velocity x, velocity y, velocity z, # x, y, z velocity in m/s

0, 0, 0, # x, y, z acceleration (not supported yet, ignored

in GCS_ Mavlink)
0, 0) # yaw, yaw rate (not supported yet, ignored in
GCS Mavlink)

49

send command to vehicle on 1 Hz cycle

for x in range (0,duration) :
vehicle.send mavlink (msg)
time.sleep (1)

fgoto helper function for drone

def goToLocation(targetLocation, gotoFunction=vehicle.simple goto):
currentLocation=vehicle.location.global relative frame
targetDistance=get distance metres (currentLocation,

targetLocation)
gotoFunction (targetLocation)

while vehicle.mode.name=="GUIDED": #Stop action if we are no
longer in guided mode.

remainingDistance=get distance metres(vehicle.location.global frame,
targetLocation)
print "Distance to target: ", remainingDistance
if remainingDistance<=targetDistance*0.01l: #Just below
target, in case of undershoot.
print "Reached target"
break;
time.sleep(2)

########ACTUAL PROGRAM STARTS HERE ALL FUNCTIONS GO ABOVE
THISH# #4444 #4444

safePointArray = [SafelLocation (Location(0,0)),
SafelLocation (Location(0,0)), SafelLocation (Location(0,0)),
Safelocation (Location(0,0))]

squarelLength = input ("Input side length of square to survey in
meters: ")

takeOff (5,5, True, " /dev/tty/AMAO")

Set airspeed using attribute

vehicle.airspeed = 1 #m/s

Set groundspeed using attribute

vehicle.groundspeed = 1 #m/s

homelL = vehicle.home location

homeLat = homel.lat

homelLong = homel.lon

50

home = Location (homeLat, homelLong)
currLoc = Location(0,0);
numFiveMeterSegments = int (round(squarelLength/5))
trackFiveMeterSegments = numFiveMeterSegments
for i in range (0, numFiveMeterSegments) :
#move the vehicle north for 5 seconds at a speed of 1 m/s
moveVehicle (1,0,0,5)
#update currlLoc variable to store location
currLoc =
Location(vehicle.location.global frame.lat,vehicle.location.global fr
ame.lon)
trackFiveMeterSegments = trackFiveMeterSegments - 1
#finds num people
numPeople = findNumPeople ()
if numPeople >= 1:
currLoc =
Location(vehicle.location.global frame.lat,vehicle.location.global fr
ame.lon)
index = closestSafePoint (currLoc, safePointArray)
safePointLocation =
LocationGlobalRelative (safePointArray[index[0]].location.latitude,
safePointArray[index[0]].location.longitude, 5)
goToLocation (safePointLocation)
time.sleep (5)
goToLocation (currLoc)

if trackFiveMeterSegments == 0:
break;

print "Returning to Launch"
vehicle.mode = VehicleMode ("LAND")
countdownAlt (30)

#Close vehicle object before exiting script
print "Close vehicle object"
vehicle.close ()

51

Pathfinding Code

This code was interfaced with python through a C++ helper library called Boost Python. We
wrote wrappers in C++ that made compiled code available through a python library. The only
drawback to this is that it needs to be recompiled from source every different system it is run on.

The wrapper is named dstarimplement.cpp.

Dstar.cpp

/*BY SOHAN VICHARE AND ADIYAN KAUL, BASED ON AND BUILT FROM
* James Neufeld (neufeldlcs.ualberta.ca)
* and Arek Sredzki (arek@sredzki.com)

*/
#include "Dstar.h"

#ifdef USE OPEN GL
#ifdef MACOS

#include <OpenGL/gl.h>
f#else

#include <GL/gl.h>
#endif

fendif

/* void Dstar::Dstar ()
* Constructor sets constants.
*/

Dstar::Dstar () {

maxSteps = 80000; // node expansions before we give up
Cl = 1; // cost of an unseen cell

/* float Dstar::keyHashCode (state u)

52

* Returns the key hash code for the state u, this is used to compare
* a state that have been updated

*/

float Dstar::keyHashCode (state u) {

return (float) (u.k.first + 1193*u.k.second);

/* bool Dstar::isValid(state u)

* Returns true if state u is on the open list or not by checking if
* it is in the hash table.
*/

bool Dstar::isValid(state u) {

ds_oh::iterator cur = openHash.find(u);
if (cur == openHash.end()) return false;
if (!'close(keyHashCode (u), cur->second)) return false;

return true;

/* void Dstar::getPath ()

* Returns the path created by replan()
*/
list<state> Dstar::getPath() {

return path;

int state::getX () {
return x;

int state::getY () {
return y;

/* bool Dstar::occupied(state u)

* returns true if the cell is occupied (non-traversable), false
* otherwise. non-traversable are marked with a cost < 0.

*/

bool Dstar::occupied(state u) {

ds ch::iterator cur = cellHash.find(u);

if (cur == cellHash.end()) return false;

return (cur->second.cost < 0);

/* void Dstar::init (int sX, int sY, int gX,

* Init dstar with start and goal coordinates,

* [S. Koenig, 2002]
*/

void Dstar::init (int sX, int sY, int gX,

cellHash.clear () ;
path.clear();
openHash.clear () ;

int gy)

while (lopenList.empty()) openList.pop();

s start.x = sX;
s start.y = sY;
s _goal.x gX;
s _goal.y gyY;

cellInfo tmp;
tmp.g = tmp.rhs = 0;
tmp.cost = C1l;

cellHash[s goal] = tmp;

tmp.g = tmp.rhs = heuristic(s_start,s goal);

tmp.cost = Cl;
cellHash[s start] = tmp;
s _start = calculateKey(s_start);

s last = s _start;

}

/* void Dstar::makeNewCell (state u)

* Checks if a cell is in the hash table,

*/

void Dstar::makeNewCell (state u) {
if (cellHash.find(u) != cellHash.end())

cellInfo tmp;

if not

return;

tmp.g = tmp.rhs = heuristic(u,s goal);

int gy)

rest is as per

{

it adds it in.

53

tmp.cost = Cl;
cellHash[u] tmp;

/* double Dstar::getG(state u)

* Returns the G value for state u.
*/
double Dstar::getG(state u) {

if (cellHash.find(u) == cellHash.end())
return heuristic(u,s goal);
return cellHash[u].g;

/* double Dstar::getRHS (state u)

* Returns the rhs value for state u.
*/
double Dstar::getRHS(state u) {

if (u == s _goal) return 0;
if (cellHash.find(u) == cellHash.end())

return heuristic(u,s goal);
return cellHash[u].rhs;

/* void Dstar::setG(state u, double g)

* Sets the G value for state u
*/
void Dstar::setG(state u, double g) {

makeNewCell (u) ;

cellHash[u].g g

/* void Dstar::setRHS (state u, double rhs)
* Sets the rhs wvalue for state u
*/

double Dstar::setRHS(state u, double rhs)

makeNewCell (u) ;

{

54

55

cellHash[u] .rhs = rhs;

/* double Dstar::eightCondist (state a, state b)

* Returns the 8-way distance between state a and state Db.

*/

double Dstar::eightCondist(state a, state b) {

double temp
double min
double max

4

fabs(a.x - b.x);
fabs(a.y - b.y);

if (min > max) {
double temp = min;
min = max;
max = temp;

}

return ((M_SQRT2-1.0)*min + max);

/* int Dstar::computeShortestPath ()

K e

* As per [S. Koenig, 2002] except for 2 main modifications:

* 1. We stop planning after a number of steps, 'maxsteps' we do this
* because this algorithm can plan forever if the start is

* surrounded by obstacles.

* 2. We lazily remove states from the open list so we never have to
* iterate through it.

*

/

int Dstar::computeShortestPath() {

list<state> s;
list<state>::iterator 1i;

if (openlList.empty()) return 1;

int k=0;

while ((!openList.empty()) &&
(openList.top() < (s_start = calculateKey(s start))) ||
(getRHS (s_start) != getG(s_start))) {

if (k++ > maxSteps) {
fprintf (stderr, "At maxsteps\n");

return

state u;

1;

bool test = (getRHS (s start) != getG(s_start));

// lazy remove

while (1) {
if (openlist.empty()) return 1;
u = openlList.top();
openList.pop () ;

if (!isValid(u)) continue;
if (! (u < s_start) && (ltest)) return 2;
break;

}

ds oh::iterator cur = openHash.find(u);

openHash.erase (cur) ;

state k old = u;

if (k _old < calculateKey(u)) { // u is out of date

insert (u) ;

} else if (getG(u) > getRHS(u)) { // needs update (got better)

setG(u,getRHS (u)) ;

getPred(u, s);

for (i=s.begin();1i !'= s.end(); i++)
updateVertex (*1i) ;

}

{

} else { // g <= rhs, state has got worse

setG(u, INFINITY) ;

getPred(u, s);

for (i=s.begin();i !'= s.end(); 1i++)
updateVertex (*1i) ;

}
updateVertex (u) ;

}

return 0;

/* bool Dstar::close(double x, double vy)

* Returns true if x and y are within 10E-5,

*/
bool Dstar::close(double x, double y) {

if (isinf(x) && isinf(y)) return true;
return (fabs(x-y) < 0.00001);

{

false otherwise

56

57

/* void Dstar::updateVertex (state u)
* As per [S. Koenig, 2002]
*/

void Dstar::updateVertex (state u) {

list<state> s;
list<state>::iterator 1i;

if (u !'= s goal) {
getSucc (u, s) ;
double tmp = INFINITY;
double tmp2;

for (i=s.begin();i !'= s.end(); i++) {
tmp2 = getG(*i) + cost(u,*i);
if (tmp2 < tmp) tmp = tmp2;

}

if (!close(getRHS (u),tmp)) setRHS (u, tmp):;

if (!'close(getG(u),getRHS(u))) insert (u);

/* void Dstar::insert(state u)

* Inserts state u into openlist and openHash.
*/

void Dstar::insert(state u) {

ds_oh::iterator cur;
float csum;

u = calculateKey (u);
cur = openHash.find(u);
csum = keyHashCode (u) ;

// return if cell is already in list. TODO: this should be
// uncommented except it introduces a bug, I suspect that there is

// bug somewhere else and having duplicates in the openList queue
// hides the problem...
//1f ((cur != openHash.end()) && (close(csum,cur->second))) return;

openHash[u] = csum;
openlList.push (u) ;

58

/* void Dstar::remove (state u)

* Removes state u from openHash. The state is removed from the
* openlist lazilily (in replan) to save computation.
*/

void Dstar::remove (state u) {

ds_oh::iterator cur = openHash.find(u);
if (cur == openHash.end()) return;
openHash.erase (cur) ;

/* double Dstar::trueDist(state a, state b)

* Euclidean cost between state a and state b.
*/
double Dstar::trueDist(state a, state b) {

float x a.x-b.x;
float vy a.y-b.y;
return sqgrt(x*x + y*y);

/* double Dstar::heuristic(state a, state b)

* Pretty self explanitory, the heristic we use is the 8-way distance
* scaled by a constant Cl (should be set to <= min cost).
*/
double Dstar::heuristic(state a, state b) {
return eightCondist (a,b) *Cl;

/* state Dstar::calculateKey (state u)
* As per [S. Koenig, 2002]

*/

state Dstar::calculateKey(state u) {

double val

fmin (getRHS (u) ,getG(u)) ;

u.k.first = val + heuristic(u,s_start) + k m;
u.k.second

val;

return u;

59

/* double Dstar::cost(state a, state b)

* Returns the cost of moving from state a to state b. This could be
* either the cost of moving off state a or onto state b, we went
with
* the former. This is also the 8-way cost.
*/
double Dstar::cost(state a, state b) {

int xd = fabs(a
int yd fabs(a.y
double scale = 1;

b.x);
b.y);

if (xd+yd>1l) scale = M SQRTZ;

if (cellHash.count(a) == 0) return scale*Cl;
return scale*cellHash[a].cost;

}
/* void Dstar::updateCell (int x, int y, double wval)

* As per [S. Koenig, 2002]
*/
void Dstar::updateCell (int x, int y, double wval) {

state u;
u.x = X;
u.y = ys
if ((u == s_start) || (u == s _goal)) return;

makeNewCell (u) ;
cellHash[u] .cost = wval;

updateVertex (u) ;

/* void Dstar::getSucc(state u,list<state> &s)

* Returns a list of successor states for state u, since this is an
* 8-way graph this list contains all of a cells neighbours. Unless
* the cell is occupied in which case it has no successors.

*/

void Dstar::getSucc(state u,list<state> &s) {

s.clear();
u.k.first = -1;
u.k.second -1;

if (occupied(u)) return;

X +=1;
.push front (u);
Ly =15
.push front (u);
x -=1;
.push front (u);
x -=1;
.push front (u);
Ly o -= 1;
.push front (u);
Ly = 15
.push front (u);
X +=1;
.push front (u);
X +=1;
.push front (u);

n c n o n o n o nocn o nocno

/* void Dstar::getPred(state u,list<state> §&s)

*

Returns a list of all the predecessor states for state u. Since
this is for an 8-way connected graph the list contails all the
neighbours for state u. Occupied neighbours are not added to the
list.

/

void Dstar::getPred(state u,list<state> &s) {

P .

s.clear();
u.k.first = -1;

u.k.second = -1;

u.x += 1;

if (l!occupied(u)) s.push front(u);
u.y += 1;

if (loccupied(u)) s.push front(u);
u.x -= 1;

if (l!occupied(u)) s.push front(u);
u.x -= 1;

if (loccupied(u)) s.push front(u);

ua.y -= 1;

60

/*

*

*

61

if (l!occupied(u)) s.push front(u);
u.y —= 1;

if (loccupied(u)) s.push front(u);
u.x += 1;

if (!occupied(u)) s.push front(u);
u.x += 1;

if (loccupied(u)) s.push front(u);
void Dstar::updateStart (int x, int vy)

Update the position of the robot, this does not force a replan.

/

void Dstar::updateStart(int x, int y) {

/*

*

*

s _start.x = x;
S _start.y 'z

k m += heuristic(s last,s start);

s _start = calculateKey(s_start);
s last = s _start;
void Dstar::updateGoal (int x, int vy)

This is somewhat of a hack, to change the position of the goal we
first save all of the non-empty on the map, clear the map, move

the

*

*

*

*

*

goal, and re-add all of non-empty cells. Since most of these cells
are not between the start and goal this does not seem to hurt
performance too much. Also it free's up a good deal of memory we
likely no longer use.

/

void Dstar::updateGoal (int x, int y) {

list< pair<ipoint2, double> > toAdd;
pair<ipoint2, double> tp;

ds_ch::iterator i;
list< pair<ipoint2, double> >::iterator kk;

for (i=cellHash.begin(); i'!=cellHash.end(),; i++) {
if (!close(i->second.cost, Cl)) {
tp.first.x = i->first.x;
tp.first.y = i->first.y;

/*

*

'_l.
* o+ ok W

*

*

bo

62

tp.second = i->second.cost;
toAdd.push back(tp);

cellHash.clear () ;
openHash.clear () ;

while (!openList.empty())
openlist.pop ()

k m = 0;
s goal.x = x;
s goal.y = y;

cellInfo tmp;
tmp.g = tmp.rhs = 0;
tmp.cost = C1l;

cellHash[s goal] = tmp;

tmp.g = tmp.rhs = heuristic(s_start,s goal);
tmp.cost = C1;

cellHash[s start] = tmp;

s _start = calculateKey(s_start);

s last = s _start;

for (kk=toAdd.begin(); kk != toAdd.end(); kk++) {

updateCell (kk->first.x, kk->first.y, kk->second);

bool Dstar::replan()
Updates the costs for all cells and computes the shortest path to
goal. Returns true if a path is found, false otherwise. The path

computed by doing a greedy search over the cost+g values in each
cells. In order to get around the problem of the robot taking a
path that is near a 45 degree angle to goal we break ties based on
the metric euclidean(state, goal) + euclidean (state,start).

/

ol Dstar::replan() {

63

path.clear();

int res = computeShortestPath();

//printf ("res: %d ols: %d ohs: %d tk: [%f %f] sk: [%f %f] sgr:
($f,%f)\n", res,openlList.size (), openHash.size(),openlList.top().k.first
,openlList.top().k.second, s _start.k.first,

s _start.k.second,getRHS (s _start),getG(s_start));
if (res < 0) {
fprintf (stderr, "NO PATH TO GOAL\n");
return false;

}
list<state> n;
list<state>::iterator 1i;

state cur = s _start;

if (isinf (getG(s_start))) {
fprintf (stderr, "NO PATH TO GOAL\n");
return false;

while(cur != s goal) ({

path.push back(cur);
getSucc (cur, n);

if (n.empty()) {
fprintf (stderr, "NO PATH TO GOAL\n");
return false;

double cmin = INFINITY;
double tmin;
state smin;

for (i=n.begin(); i'=n.end(); i++) {
//if (occupied(*1)) continue;
double val = cost(cur,*i);
double val2 = trueDist(*i,s goal) + trueDist (s start,*i); //

(Euclidean) cost to goal + cost to pred
val += getG(*1i);

if (close(val,cmin)) {
if (tmin > val2) {
tmin = val2;
cmin = val;

smin = *i;

}

} else if (val < cmin) {

tmin = val2;
cmin = val;
smin = *i;
}
}
n.clear();
cur = smin;

}
path.push back(s goal);
return true;

#ifdef USE OPEN GL
void Dstar::draw () {

ds ch::iterator iter;
ds oh::iterator iterl;
state t;

list<state>::iterator iter2;

glBegin (GL QUADS) ;
for (iter=cellHash.begin(); iter != cellHash.end(); iter++) {
if (iter->second.cost == 1) glColor3f(0,1,0);
else 1f (iter->second.cost < 0) glColor3f(1,0,0);
else glColor3f(0,0,1);
drawCell (iter->first,0.45);

glColor3f(1,1,0);
drawCell (s_start,0.45);
glColor3f(1,0,1);
drawCell (s _goal,0.45);

for (iterl=openHash.begin(); iterl != openHash.end(); iterl++) {
glColor3£(0.4,0,0.8);
drawCell (iterl->first, 0.2);

glEnd () ;

glLineWidth (4) ;
glBegin (GL LINE STRIP);
glColor3f (0.6, 0.1, 0.4);

for (iter2=path.begin(); iter2 != path.end(); iter2++)
glVertex3f (iter2->x, iter2->y, 0.2);

}
glEnd() ;

void Dstar::drawCell (state s, float size) {

float x = s.x;
float yv = s.y;
glVertex2f(x - size, y - size);
glVertex2f(x + size, y - size);
glVertex2f(x + size, y + size);
glVertex2f(x - size, y + size);
}
#else
void Dstar::draw () {}
void Dstar::drawCell (state s, float z) {}
#endif

Dstar.h

/*BY SOHAN VICHARE, BASED ON AND BUILT FROM
* James Neufeld (neufeld@cs.ualberta.ca)
* and Arek Sredzki (arek@sredzki.com)

*/

#ifndef DSTAR H
#define DSTAR H

#include
#include
#include
#include
#include
#include

<math.h>
<stack>
<gqueue>

<list>
<stdio.h>
<ext/hash map>

65

using namespace std;
using namespace gnu_Ccxx;

class state {
public:

}s

int x;

int y;

int getX():;

int getY();
pair<double,double> k;

bool operator == (const state &s2) const {
return ((x == s2.x) && (y == s2.Vy));

}

bool operator != (const state &s2) const {
return ((x != s2.x) || (y '= s2.vy));

bool operator > (const state &s2) const {
if (k.first-0.00001 > s2.k.first) return true;
else 1f (k.first < s2.k.first-0.00001) return false;
return k.second > s2.k.second;

bool operator <= (const state &s2) const {
if (k.first < s2.k.first) return true;
else 1f (k.first > s2.k.first) return false;
return k.second < s2.k.second + 0.00001;

bool operator < (const state &s2) const {
if (k.first + 0.000001 < s2.k.first) return true;
else 1f (k.first - 0.000001 > s2.k.first) return false;
return k.second < s2.k.second;

struct ipoint2 {

}s

int x,y;

struct cellInfo {

double g;
double rhs;

66

67

double cost;
}s

class state hash {
public:
size t operator () (const state &s) const {
return s.x + 34245*s.y;
}
i

typedef priority queue<state, vector<state>, greater<state> > ds pqg;
typedef hash map<state,cellInfo, state hash, equal to<state> > ds ch;
typedef hash map<state, float, state hash, equal to<state> > ds oh;

class Dstar {
public:

Dstar () ;

void init (int sX, int sY, int gX, int gY);:;
void updateCell (int x, int y, double wval);
void updateStart (int x, int vy);

void updateGoal (int x, int vy);

bool replan () ;

void draw () ;

void drawCell (state s, float z);

list<state> getPath();
private:
list<state> path;

double C1;

double k m;

state s _start, s goal, s last;
int maxSteps;

ds _pg openList;
ds ch cellHash;
ds oh openHash;

bool close (double x, double y);
void makeNewCell (state u);
double getG(state u);

double getRHS (state u);

void setG(state u, double g);

double setRHS (state u, double rhs);
double eightCondist (state a, state Db);

int computeShortestPath () ;
void updateVertex (state u);
void insert (state u);
void remove (state u);

double trueDist (state a, state b);
double heuristic(state a, state b);
state calculateKey(state u);
void getSucc (state u, list<state> &s);
void getPred(state u, list<state> &s);
double cost(state a, state b);
bool occupied(state u);
bool isValid(state u);
float keyHashCode (state u);

i

#endif

DstarImplement.cpp

//PYTHON WRAPPER FOR DSTARLITE ALGORITHM

#include "Dstar.h"
#include <iostream>
#include <list>
#include "python.hpp"
using namespace std;

Dstar *dstar = new Dstar():;
list<state> mypath;

void dStarInit (int startX, int start¥Y, int goalX, int goalY)

{
dstar->init (startX,start¥Y,goalX,goaly);

void dStarUpdateGoal (int goalX, int goaly)

{
dstar->updateGoal (goalX, goalY);

68

void dStarUpdateStart (int startX, int starty)

{
dstar->updateStart (startX, startyY);

void dStarAddBlock (int xCoor, int yCoor)

{

dstar->updateCell (xCoor, yCoor, -1);

I4

void dStarUpdateCell (int xCoor, int yCoor, int cost)

{

dstar->updateCell (xCoor, yCoor, cost);

void dStarReplan ()

{
dstar->replan () ;

void dStarUpdatePathVar ()

{
mypath = dstar->getPath();

int dStarGetPathLength ()

{
mypath = dstar->getPath();
return mypath.size();

int dStarGetXAtIndex (int index)
{
int xToReturn;
auto front = mypath.begin();
for (int 1 = 0; 1 <= index; 1i++){
std::list<state>::iterator it
std: :advance (it, 1i);
xToReturn = it->getX();
}

return xToReturn;

int dStarGetYAtIndex (int index)
{
int yToReturn;
auto front = mypath.begin();
for (int 1 = 0; 1 <= index; 1i++){

mypath.begin () ;

69

std::1list<state>::iterator it = mypath.begin();
std::advance (it, 1i);
yToReturn = it->getY¥Y();

}

return yToReturn;

#include <boost/python/module.hpp>
#include <boost/python/def.hpp>
using namespace boost::python;

BOOST PYTHON MODULE (dstarlite)
{

def ("init", dStarInit);

def ("addBlock", dStarAddBlock);

def ("replan", dStarReplan);

def ("updatePathVar", dStarUpdatePathVar);
def ("getPathLength", dStarGetPathLength) ;
def ("getXAtIndex", dStarGetXAtIndex);

def ("getYAtIndex", dStarGetYAtIndex);

def ("updateCell", dStarUpdateCell);

def ("updateGoal", dStarUpdateGoal);

def ("updateStart", dStarUpdateStart);

PathAlgorithm.py

-*- coding: utf-8 -*-

#BY SOHAN VICHARE Adiyan Kaul 2015
ftesting out dstarlite dynamic pathfinding algorithm and logic for
finding closest safe point

#import needed dependiences

from random import randint

import cv2

import math

import matplotlib.pyplot as plot
import matplotlib.patches as mpatches
import matplotlib.font manager as fm
import dstarlite

#define location class that stores latitude and longitude

71

class Location:
"Basic Location class, used to store latitude and longitude"

def init (self, latitude, longitude):
self.latitude = latitude
self.longitude = longitude

#define Person class, which stores location data, closest safe point
data for a person
class Person:

"Person class, used to store data for a person. Has two
attributes, location (which stores the person's location), and
safePointArray (which stores an array of safePoints in order of which
is closest to the location)"

def init (self,location):

self.location = location

#an array of safe points, in order of what is closest to the
person

self.safePointArray = [];

#define function that finds the closes safe point to a given
location, returns an array of array indexes, where the first one is
the closest and so on

def closestSafePoint(self, safePointLocationArray) :

#define array that will be returned
closestPointIndexArray = [];

usedIndexArray = [];
closestDist = 1000;
closestIndex = 0;

for index, item in enumerate (safePointLocationArray) :
for ind, itm in enumerate(safePointLocationArray) :
if ind not in usedIndexArray:
dist = distanceBetweenLocations (itm.location,
self.location, "");
if dist <= closestDist:
closestDist = dist;
closestIndex = ind;

if closestIndex not in usedIndexArray:
usedIndexArray.append(closestIndex) ;
closestPointIndexArray.append(closestIndex) ;
closestDist = 1000;

return closestPointIndexArray;

72

#define Safelocation class, which stores location data, which people
are at each Safe Location
class Safelocation:

"Safe Location class, used to store data for a safe location. Has
two attributes, one is location (a location object which stores the
location), and the second is peopleArrivedArray, which is an array
that stores the people who have reached this location."

def init (self, location):
self.location = location
#an array of Person objects, used to store what people are
already at the safelLocation

self.peopleArrivedArray = [];

#define helper method to print arrays with locations so that they are
easy to see
def printLocationArray (locationArray) :
for item in locationArray:
print item.latitude
print item.longitude
print " "

#define helper method to get an array of the locations object from an
array of a person, safelocation, or any other object that has
location as a property
def getLocationsArray(safelocsArray) :

returnArray = []

for item in safelocsArray:

returnArray.append(item.location);
return returnArray;

#define helper class to plot a location array's points, takes in
array of location Arrays
def plotLocationArray(locationArray, color):
xcoords = []
ycoords []
for item in locationArray:
xcoords.append (item.latitude) ;
ycoords.append(item.longitude) ;
plot.plot (xcoords, ycoords,color) ;
plot.axis ([0, 30, 0, 301)

#distance formula function, finds distance between two location
objects, accounting for the earth's spherical shape (assumes that
earth is a sphere)

def distanceBetweenlLocations (locationl, location?2, distanceUnit):

#

Convert latitude and longitude to spherical coordinates in

radians.
degreesToRadians = math.pi/180.0

phi = 90 - latitude
phil = (90.0 - locationl.latitude) *degreesToRadians
phi2 = (90.0 - location2.latitude) *degreesToRadians

#

theta = longitude

thetal = locationl.longitude*degreesToRadians

theta?

S oS W S

cos

arc

location2.longitude*degreesToRadians
Compute spherical distance from spherical coordinates.

For two locations in spherical coordinates
(1, theta, phi) and (1, theta', phi')
cosine(arc length) =
sin phi sin phi' cos(theta-theta') + cos phi cos phi'
distance = rho * arc length

(math.sin(phil) *math.sin (phi2) *math.cos (thetal - thetal2)
math.cos (phil) *math.cos (phi2))
math.acos (cos)

multiply and return arc by the right distance unit, miles or
kilometers

unit = 1;

if distanceUnit == "miles":

unit = 3960

if distanceUnit == "kilometers":

unit = 6737

return arc * unit;

73

|

#function to get a location array from dstarlite -> returns an array
of locations which is the steps for the path the drone will take
def dStarLiteGetLocationArray () :

arrToReturn = [];

dstarlite.updatePathVar();

pathLength = dstarlite.getPathLength ()

for getindex in range (0, pathLength) :

latitud = dstarlite.getXAtIndex (getindex);
longitud = dstarlite.getYAtIndex (getindex);
locashun = Location (latitud, longitud);
arrToReturn.append(locashun) ;

return arrToReturn

74

#initialize dstarlite at a random location and give it a random goal

plot.figure(2);

x1l = randint (-10, -8)

yl = randint (-10, 8)

x2 = randint (8, 10)

y2 = randint (8, 10)
plot.axis([-11,11,-11,11])
plot.plot([x1,x2],[yl,y2],'ro");
dstarlite.init(x1, vyl, x2, vy2);

fadd random obstacles

for x in range(0,90):
blockX = randint (-10, 10)
blockY randint (=10, 10)
dstarlite.addBlock (blockX, blockY);
plot.plot([blockX], [blockY], 'go');

#replan and update the path variable for dstar

dstarlite.replan();

dstarlite.updatePathVar() ;

pathArray = dStarlLiteGetLocationArray();

xArr = [];

yArr = [];

for item in pathArray:
xXArr.append(item.latitude) ;
yArr.append(item.longitude) ;

plot.plot (xArr, yArr, 'b');

printLocationArray (dStarLiteGetLocationArray());

#define arrays that store safe location and person location variables

safelocationArray = [];
personArray = [];

#change plot
plot.figure(l);

fpopulate personLocs

for x in range (0, 4):
lat = randint (1,20)
lon = randint (1,20)
loc = Location(lat,lon);
p = Person(loc)
personArray.append (p) ;

fpopulate safelocs
for x in range (0, 2):
lat = randint (1,20)

75

lon = randint (1,20)

loc = Location(lat,lon);

s = Safelocation(loc);
safelocationArray.append(s) ;

#fplot both arrays on the graph
plotLocationArray (getLocationsArray (personArray), 'ro');
plotLocationArray(getLocationsArray(safelocationArray), 'bo');

#LOGIC TO FIND CLOSEST SAFE POINT TO EACH PERSON AND DRAW A LINE
BETWEEN THE RANDOMLY GENERATED POINTS
for item in personArray:
colorsArray = ['m','k','y','c'",'g','r','b",]
personlLocation = item.location
plot.plot (personLocation.latitude,personlLocation.longitude, 'bo"')
closestSafelocIndexArray =
item.closestSafePoint (safelocationArray);
for index, item in enumerate(closestSafelocIndexArray) :
closestSafeloc = safelocationArray[item];
plot.plot (closestSafeloc.location.latitude,
closestSafeloc.location.longitude, 'ro');
plot.plot ([closestSafeloc.location.latitude,
personlLocation.latitude], [closestSafeloc.location.longitude,
personLocation.longitude],colorsArray[index]) ;

#show plot and create legend

safe points = mpatches.Patch(color="'red', label='Red dots = Safe
Points (designated by user)')

person_points = mpatches.Patch(color="'blue', label='Blue dots =
People (found by drone) ')

line = mpatches.Patch(color="magenta", label='lst option')

linel = mpatches.Patch(color="black", label='2nd option')

line?2 = mpatches.Patch(color="yellow", label='3rd option')

line3 = mpatches.Patch(color="cyan", label='4th option')

lined4 = mpatches.Patch(color="green", label='5th option')

1line5 = mpatches.Patch(color="red", label='6th option')

line6 = mpatches.Patch(color="blue", label='7th option')

prop = fm.FontProperties(size=14)

plot.legend (handles=[safe points, person points, line, linel, line2,
line3, 1line4, 1lineb5, line6], prop=prop)

plot.show () ;

testtlightl.py

from dronekit import connect, VehicleMode, LocationGlobalRelative
import time

Connect to the Vehicle
print 'Connecting to vehicle;'
vehicle = connect ("/dev/ttyACMO", wait ready=True)

vehicle is an instance of the Vehicle class
print "Global Location: %s" % vehicle.location.global frame

print "Global Location (relative altitude): %s" %
vehicle.location.global relative frame
print "Local Location: %s" % vehicle.location.local frame #NED

print "Attitude: %$s" % vehicle.attitude
print "Velocity: %$s" % vehicle.velocity

(¢}

print "GPS: %s" % vehicle.gps O

print "Groundspeed: %$s" % vehicle.groundspeed

print "Airspeed: %$s" % vehicle.airspeed

print "Battery: %s" $ vehicle.battery

print "EKF OK?: %s" % vehicle.ekf ok

print "Last Heartbeat: %s" % vehicle.last heartbeat

Q

print "Rangefinder: %$s" % vehicle.rangefinder

print "Rangefinder distance: %$s" % vehicle.rangefinder.distance
print "Rangefinder voltage: %s" $ vehicle.rangefinder.voltage

76

77

vehicle.heading

print "Heading: %s"
print "Is Armable?: %s" % vehicle.is armable

print "System status: %s" % vehicle.system status.state

Q.

print "Mode: %s" % vehicle.mode.name # settable

Q

print "Armed: %$s" % vehicle.armed

%
)
o

def arm and takeoff (aTargetAltitude):

Arms vehicle and fly to aTargetAltitude.

muaw

print "Basic pre-arm checks"
Don't try to arm until autopilot is ready
while not vehicle.is armable:
print " Waiting for vehicle to initialise..."
time.sleep (1)

print "Arming motors"

Copter should arm in GUIDED mode
vehicle.mode = VehicleMode ("GUIDED")
vehicle.armed = True

Confirm vehicle armed before attempting to take off
while not vehicle.armed:

print " Waiting for arming..."

time.sleep (1)

print "Taking off!"
vehicle.simple takeoff (aTargetAltitude) # Take off to target
altitude

Wait until the vehicle reaches a safe height before processing
the goto (otherwise the command
after Vehicle.simple takeoff will execute immediately).
while True:
print " Altitude: ",
vehicle.location.global relative frame.alt
#Break and return from function just below target altitude.
if
vehicle.location.global relative frame.alt>=aTargetAltitude*0.95:
print "Reached target altitude"
break
time.sleep (1)

def countdown (amtTime) :
i =0
while 1 <= amtTime:

print ("COUNTDOWN: "+str (amtTime-1i))
time.sleep (1)
i = 1i+1

def countdownAlt (amTime) :
o=20
while o <= amTime:
print ("COUNTDOWN: "+str (amTime-o0))
print " Altitude: ",
vehicle.location.global relative frame.alt
time.sleep (1)
o = o+l

countdown (20)

print "Set default/target airspeed to 1"
vehicle.airspeed=1
vehicle.groundspeed =1

arm_and takeoff (1)

print "Returning to Launch"
vehicle.mode = VehicleMode ("LAND")
countdownAlt (30)

#Close vehicle object before exiting script
print "Close vehicle object"
vehicle.close ()

testtlight2.py

Import DroneKit-Python
from dronekit import connect, VehicleMode
import time

Connect to the Vehicle.

print "Connecting to vehicle on: 'tcp:127.0.0.1:5760"'"

vehicle = connect ("/dev/ttyACMO", wait ready=True)

from dronekit import connect, VehicleMode, LocationGlobalRelative
from pymavlink import mavutil # Needed for command message
definitions

import time

vehicle 1s an instance of the Vehicle class

78

79

o)

print "Global Location: %s" % vehicle.location.global frame

print "Global Location (relative altitude): %$s" %
vehicle.location.global relative frame
print "Local Location: %s" % vehicle.location.local frame #NED

print "Attitude: %s"

vehicle.attitude
print "Velocity: %s" vehicle.velocity

print "GPS: %s" % vehicle.gps O

Q

print "Groundspeed: %$s" % vehicle.groundspeed
print "Airspeed: %$s" % vehicle.airspeed

print "Battery: %s" $ vehicle.battery

print "EKF OK?: %s" % vehicle.ekf ok

o)

print "Last Heartbeat: %s" % vehicle.last heartbeat

Q

rint "Rangefinder: %s" % vehicle.rangefinder
p

o

print "Rangefinder distance: %s" % vehicle.rangefinder.distance
print "Rangefinder voltage: %s" % vehicle.rangefinder.voltage
print "Heading: %s" vehicle.heading

print "Is Armable?: %$s" % vehicle.is armable

print "System status: %s" % vehicle.system status.state

print "Mode: %s" % vehicle.mode.name # settable

o)

print "Armed: %$s" % vehicle.armed

o)

°
o)
°

def arm and takeoff (aTargetAltitude):

mmon

Arms vehicle and fly to aTargetAltitude.

mman

print "Basic pre-arm checks"
Don't try to arm until autopilot is ready
while not vehicle.is armable:
print " Waiting for vehicle to initialise..."
time.sleep (1)

print "Arming motors"

Copter should arm in GUIDED mode
vehicle.mode = VehicleMode ("GUIDED")
vehicle.armed = True

Confirm vehicle armed before attempting to take off
while not vehicle.armed:

print " Waiting for arming..."

time.sleep (1)

print "Taking off!"
vehicle.simple takeoff (aTargetAltitude) # Take off to target
altitude

80

Wait until the vehicle reaches a safe height before processing

the goto (otherwise the command
after Vehicle.simple takeoff will execute immediately).
while True:
print " Altitude: ",
vehicle.location.global relative frame.alt
#Break and return from function just below target altitude.
if
vehicle.location.global relative frame.alt>=aTargetAltitude*0.95:
print "Reached target altitude"
break
time.sleep (1)

def countdown (amtTime) :
i=20
while 1 <= amtTime:
print ("COUNTDOWN: "+str (amtTime-1i))
time.sleep (1)
i = i+1

def countdownAlt (amTime) :
o=20
while o <= amTime:
print ("COUNTDOWN: "+str (amTime-o0))
print " Altitude: ",
vehicle.location.global relative frame.alt
time.sleep (1)
o = o+l

def countdownLoc (amTime) :
o =20
while o <= amTime:
print ("COUNTDOWN: "+str (amTime-o0))
print " Altitude: ", vehicle.location.global relative frame
time.sleep (1)
o = o+l

def moveVehicle(velocity x, velocity y, velocity z, duration):

mmon

Move vehicle in direction based on specified velocity vectors.

muan

msg =

vehicle.message factory.set position target local ned encode (
0, # time boot ms (not used)
o, 0O, # target system, target component

mavutil.mavlink.MAV FRAME LOCAL NED, # frame
0b0000111111000111, # type mask (only speeds enabled)
0, 0, 0, # x, y, z positions (not used)

81

velocity x, velocity y, velocity z, # x, y, z velocity in m/s
0, 0, 0, # x, y, z acceleration (not supported yet, ignored

in GCS Mavlink)
0, 0) # yaw, yaw rate (not
GCS Mavlink)

send command to vehicle on 1 Hz

for x in range (0,duration):
vehicle.send mavlink (msqg)
time.sleep (1)

countdown (20)

print "Set default/target airspeed to
vehicle.airspeed=1
vehicle.groundspeed =1

arm_and takeoff (1)

#move the vehicle north for 5 seconds
moveVehicle (1,0,0,5)

countdownLoc (5)

print "Returning to Launch"
vehicle.mode = VehicleMode ("LAND")
countdownAlt (30)

supported yet, ignored in

cycle

1"

at a speed of 1 m/s

#Close vehicle object before exiting script

print "Close vehicle object"”
vehicle.close()

testtlight3.py

from dronekit import connect, VehicleMode, LocationGlobalRelative
from pymavlink import mavutil # Needed for command message

definitions

import time

from picamera.array import PiRGBArray
from picamera import PiCamera

import cv2

import numpy as np

82

Connect to the Vehicle
print 'Connecting to vehicle;'
vehicle = connect ("/dev/ttyACMO", wait ready=True)

vehicle 1s an instance of the Vehicle class

o)

print "Global Location: %s" % vehicle.location.global frame

print "Global Location (relative altitude): %s" %
vehicle.location.global relative frame
print "Local Location: %s" % vehicle.location.local frame #NED

print "Attitude: %s" vehicle.attitude

print "Velocity: %s" vehicle.velocity

print "GPS: %s" % vehicle.gps O

print "Groundspeed: %$s" % vehicle.groundspeed
print "Airspeed: %s" $ vehicle.airspeed

print "Battery: %s" % vehicle.battery

print "EKF OK?: %s" % vehicle.ekf ok

QO

print "Last Heartbeat: %s" % vehicle.last heartbeat

print "Rangefinder: %$s" % vehicle.rangefinder

print "Rangefinder distance: %s" % vehicle.rangefinder.distance
print "Rangefinder voltage: %s" % vehicle.rangefinder.voltage
print "Heading: %s" vehicle.heading

print "Is Armable?: %s" % vehicle.is armable

o)

print "System status: %s" % vehicle.system status.state
print "Mode: %s" % vehicle.mode.name # settable
print "Armed: %$s" % vehicle.armed

camera = PiCamera ()

rawCapture = PiRGBArray (camera)

hog = cv2.HOGDescriptor ()

hog.setSVMDetector (cv2.HOGDescriptor getDefaultPeopleDetector())

o o

o)

o
)
o

def arm and takeoff (aTargetAltitude):

muan

Arms vehicle and fly to aTargetAltitude.

mmon

print "Basic pre-arm checks"
Don't try to arm until autopilot is ready
while not vehicle.is armable:
print " Waiting for vehicle to initialise..."
time.sleep (1)

print "Arming motors"

Copter should arm in GUIDED mode
vehicle.mode = VehicleMode ("GUIDED")
vehicle.armed True

83

Confirm vehicle armed before attempting to take off
while not vehicle.armed:

print " Waiting for arming..."

time.sleep (1)

print "Taking off!"
vehicle.simple takeoff (aTargetAltitude) # Take off to target
altitude

Wait until the vehicle reaches a safe height before processing
the goto (otherwise the command
after Vehicle.simple takeoff will execute immediately).
while True:
print " Altitude: ",
vehicle.location.global relative frame.alt
#Break and return from function just below target altitude.
if
vehicle.location.global relative frame.alt>=aTargetAltitude*0.95:
print "Reached target altitude"
break
time.sleep (1)

def countdown (amtTime) :
i=20
while i1 <= amtTime:
print ("COUNTDOWN: "+str (amtTime-i))
time.sleep (1)
i = i+1

def countdownAlt (amTime) :
o =20
while o <= amTime:
print ("COUNTDOWN: "+str (amTime-o0))
print " Altitude: ",
vehicle.location.global relative frame.alt
time.sleep (1)

o = o+l
def countdownLoc (amTime) :
o =20

while o <= amTime:
print ("COUNTDOWN: "+str (amTime-o0))
print " Altitude: ", vehicle.location.global relative frame
time.sleep (1)
o = o+l

def moveVehicle(velocity x, velocity y, velocity z, duration):

mmon

Move vehicle in direction based on specified velocity vectors.

mmoawn

84

msg =

vehicle.message factory.set position target local ned encode (
0, # time boot ms (not used)
o, 0O, # target system, target component

mavutil.mavlink.MAV FRAME LOCAL NED, # frame
0b0000111111000111, # type mask (only speeds enabled)

0, 0, 0, # x, y, z positions (not used)

velocity x, velocity y, velocity z, # x, vy,

z velocity in m/s

0, 0, 0, # x, y, z acceleration (not supported yet, ignored

in GCS Mavlink)

0, 0) # yaw, yaw rate (not supported yet, ignored in

GCS Mavlink)

send command to vehicle on 1 Hz cycle

for x in range (0,duration):
vehicle.send mavlink (msqg)
time.sleep (1)

def takePicture() :
camera.capture (rawCapture, format="bgr")
image = rawCapture.array
return image

gets the number of people in the image
def readImage (image) :
(rects, weights) = hog.detectMultiScale (image,
padding=(8, 8), scale=1.05)
count=0
for (xA, yA, xB, yB) in rects:
count=count+1
return count

def findNumPeople() :
img =takePicture();
people= readImage (img)
return people

countdown (20)
print "Set default/target airspeed to 1"
vehicle.airspeed=1

vehicle.groundspeed =1

arm_and takeoff (1)

winStride=(4, 4),

moveVehicle (0.5,1,0,2)
countdownLoc (2) ;

count = findNumPeople ()
countdown (1)
print (count)

print "Returning to Launch"
vehicle.mode = VehicleMode ("LAND")
countdownAlt (30)

#Close vehicle object before exiting script
print "Close vehicle object"
vehicle.close ()

testtlight4.py

from dronekit import connect, VehicleMode,
LocationGlobalRelative, LocationGlobal

from pymavlink import mavutil # Needed for command message
definitions

import time

from picamera.array import PiRGBArray

from picamera import PiCamera

import cv2

import numpy as np

import math

Connect to the Vehicle
print 'Connecting to vehicle;'
vehicle = connect ("/dev/ttyACMO", wait ready=True)

vehicle is an instance of the Vehicle class
print "Global Location: %s" % vehicle.location.global frame

86

print "Global Location (relative altitude): %s" %
vehicle.location.global relative frame
print "Local Location: %s" % vehicle.location.local frame #NED

print "Attitude: %$s" % vehicle.attitude
print "Velocity: %$s" % vehicle.velocity

(¢}

print "GPS: %s" % vehicle.gps O

print "Groundspeed: %$s" % vehicle.groundspeed
print "Airspeed: %$s" % vehicle.airspeed

print "Battery: %s" $ vehicle.battery

print "EKF OK?: %s" % vehicle.ekf ok

o

print "Last Heartbeat: %s" % vehicle.last heartbeat

Q

print "Rangefinder: %$s" % vehicle.rangefinder

O

print "Rangefinder distance: %$s" % vehicle.rangefinder.distance
print "Rangefinder voltage: %s" $ vehicle.rangefinder.voltage
print "Heading: %s" vehicle.heading

print "Is Armable?: %s" % vehicle.is armable

print "System status: %s" % vehicle.system status.state

print "Mode: %s" % vehicle.mode.name # settable

print "Armed: %s" % vehicle.armed

camera = PiCamera ()

rawCapture = PiRGBArray (camera)

hog = cv2.HOGDescriptor ()

hog.setSVMDetector (cv2.HOGDescriptor getDefaultPeopleDetector())

o

%
%

def arm and takeoff (aTargetAltitude):

mmon

Arms vehicle and fly to aTargetAltitude.

muan

print "Basic pre-arm checks"
Don't try to arm until autopilot is ready
while not vehicle.is armable:
print " Waiting for vehicle to initialise..."
time.sleep (1)

print "Arming motors"

Copter should arm in GUIDED mode
vehicle.mode = VehicleMode ("GUIDED")
vehicle.armed = True

Confirm vehicle armed before attempting to take off
while not vehicle.armed:

print " Waiting for arming..."

time.sleep (1)

print "Taking off!"

87

vehicle.simple takeoff (aTargetAltitude) # Take off to target
altitude

Wait until the vehicle reaches a safe height before processing
the goto (otherwise the command
after Vehicle.simple takeoff will execute immediately).
while True:
print " Altitude: ",
vehicle.location.global relative frame.alt
#Break and return from function just below target altitude.
if
vehicle.location.global relative frame.alt>=aTargetAltitude*(0.95:
print "Reached target altitude"
break
time.sleep (1)

def countdown (amtTime) :
i=20
while i <= amtTime:
print ("COUNTDOWN: "+str (amtTime-i))
time.sleep (1)
i = i+1

def countdownAlt (amTime) :
o=20
while o <= amTime:
print ("COUNTDOWN: "+str (amTime-o0))
print " Altitude: ",
vehicle.location.global relative frame.alt
time.sleep (1)
o = o+l
def moveVehicle (velocity x, velocity y, velocity z, duration):

muan

Move vehicle in direction based on specified velocity vectors.

mmon

msg =

vehicle.message factory.set position target local ned encode (
0, # time boot ms (not used)
0, O, # target system, target component

mavutil.mavlink.MAV FRAME LOCAL NED, # frame

0b0000111111000111, # type mask (only speeds enabled)

0, 0, 0, # x, y, z positions (not used)

velocity x, velocity y, velocity z, # x, y, z velocity in m/s

0, 0, 0, # x, y, z acceleration (not supported yet, ignored
in GCS_ Mavlink)

0, 0) # yaw, yaw rate (not supported yet, ignored in
GCS_Mavlink)

88

send command to vehicle on 1 Hz cycle

for x in range (0,duration) :
vehicle.send mavlink (msg)
time.sleep (1)

def goToLocation(targetLocation, gotoFunction=vehicle.simple goto):
currentLocation=vehicle.location.global relative frame
targetDistance=get distance metres (currentLocation,
targetLocation)
gotoFunction (targetLocation)

while vehicle.mode.name=="GUIDED": #Stop action if we are no
longer in guided mode.

remainingDistance=get distance metres(vehicle.location.global frame,
targetLocation)
print "Distance to target: ", remainingDistance
if remainingDistance<=targetDistance*0.01l: #Just below
target, in case of undershoot.
print "Reached target"
break;
time.sleep (2)
def get distance metres(aLocationl, alLocation2):
mrwn
Returns the ground distance in metres between two LocationGlobal
objects.

This method is an approximation, and will not be accurate over
large distances and close to the
earth's poles. It comes from the ArduPilot test code:

https://github.com/diydrones/ardupilot/blob/master/Tools/autotest/com
mon.py

dlat = alLocation2.lat - alLocationl.lat

dlong = aLocation2.lon - alLocationl.lon

return math.sqgrt ((dlat*dlat) + (dlong*dlong)) * 1.113195e5

def takePicture() :
camera.capture (rawCapture, format="bgr")
image = rawCapture.array
return image

gets the number of people in the image
def readImage (image) :
(rects, weights) = hog.detectMultiScale (image, winStride=(4, 4),

padding=(8, 8), scale=1.05)
count=0
for (xA, yA, xB, yB) in rects:
count=count+l
return count

def findNumPeople() :
img =takePicture();
people= readImage (img)
return people

countdown (20)
print "Set default/target airspeed to 1"
vehicle.airspeed=1

vehicle.groundspeed =1

arm_and takeoff (1)
moveVehicle (1,0,0,5)

count = findNumPeople ()
print (count)

lat = 0;
lon = 0;
alt = 1;
a location = LocationGlobal (lat, lon, alt)

if (count>1) :
goToLocation(a location)

print "Returning to Launch"
vehicle.mode = VehicleMode ("LAND")
countdownAlt (30)

#Close vehicle object before exiting script
print "Close vehicle object"
vehicle.close ()

89

